IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v365y2024ics0306261924006366.html
   My bibliography  Save this article

Production capacity prediction based response conditions optimization of straw reforming using attention-enhanced convolutional LSTM integrating data expansion

Author

Listed:
  • Han, Yongming
  • Li, Zhiyi
  • Wei, Tingting
  • Zuo, Xiaoyu
  • Liu, Min
  • Ma, Bo
  • Geng, Zhiqiang

Abstract

As a green and renewable energy source, biomass energy has the potential to solve environmental pollution and resource shortage. The utilization of the straw as a feedstock for the production of clean energy gases and notably methane, via anaerobic processes, has garnered substantial interest within the scientific community. Nevertheless, the intricacies inherent in the biomass synthesis system and the practical constraints associated with experimental operations pose challenges in developing a precise predictive model for the yield estimation when working with limited sample data. Therefore, a novel production prediction method using the synthetic minority oversampling technique (SMOTE) algorithm incorporating an Attention-Enhanced convolutional long short-term memory (SMOTE-ACL) is proposed. The SMOTE algorithm is utilized to extend the original data to build the training and test sets. Then, an embedding layer enhances the local features to higher dimensions, by using a convolutional neural network (CNN) for the feature extraction. Subsequently, the long short-term memory (LSTM) augmented with an attention mechanism is utilized for the temporal prediction and derives the prediction result through the fully-connected layer. Finally, the SMOTE-ACL method is applied to predict the unit production of the straw bioconversion for response conditions optimization. The SMOTE-ACL method integrating local and global information improves the ability to model multidimensional time series data, and achieves the best prediction accuracy than the radial basis function (RBF) neural network, the multilayer perceptron (MLP), the CNN, the recurrent neural network (RNN) and the LSTM. Meanwhile, it is of guiding significance for real-time monitoring of experiments and optimizing the plant production.

Suggested Citation

  • Han, Yongming & Li, Zhiyi & Wei, Tingting & Zuo, Xiaoyu & Liu, Min & Ma, Bo & Geng, Zhiqiang, 2024. "Production capacity prediction based response conditions optimization of straw reforming using attention-enhanced convolutional LSTM integrating data expansion," Applied Energy, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006366
    DOI: 10.1016/j.apenergy.2024.123253
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924006366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.