IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4720-d1171425.html
   My bibliography  Save this article

Optimization of Thermodynamic Parameters of the Biological Hydrogen Methanation in a Trickle-Bed Reactor for the Conditioning of Biogas to Biomethane

Author

Listed:
  • Elena Holl

    (State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, 70599 Stuttgart, Germany)

  • Anastasia Oskina

    (State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, 70599 Stuttgart, Germany)

  • Urs Baier

    (Specialist Department for Biocatalysis and Process Technology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8400 Winterthur, Switzerland)

  • Andreas Lemmer

    (State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, 70599 Stuttgart, Germany)

Abstract

The increased demand for resources and energy that is developing with rising global consumption represents a key challenge for our generation. Biogas production can contribute to sustainable energy production and closing nutrient cycles using organic residues or as part of a utilization cascade in the case of energy crops. Compared to hydrogen (H 2 ), biogas with a high methane (CH 4 ) content can be fed into the gas grid without restrictions. For this purpose, the CH 4 content of the biogas must be increased from 52 to 60% after anaerobic digestion to more than 96%. In this study, biological hydrogen methanation (BHM) in trickling-bed reactors (TBR) is used to upgrade biogas. Design of experiments (DoE) is used to determine the optimal process parameters. The performance of the reactors is stable under all given conditions, reaching a “low” gas grid quality of over 90%. The highest CH 4 content of 95.626 ± 0.563% is achieved at 55 °C and 4 bar, with a methane formation rate (MFR) of 5.111 ± 0.167 m 3 /(m 3 ·d). The process performance is highly dependent on the H 2 :CO 2 ratio in the educts, which should be as close as possible to the stochiometric ratio of 4. In conclusion, BHM is a viable approach to upgrade biogas to biomethane quality and can contribute to a sustainable energy grid.

Suggested Citation

  • Elena Holl & Anastasia Oskina & Urs Baier & Andreas Lemmer, 2023. "Optimization of Thermodynamic Parameters of the Biological Hydrogen Methanation in a Trickle-Bed Reactor for the Conditioning of Biogas to Biomethane," Energies, MDPI, vol. 16(12), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4720-:d:1171425
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4720/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4720/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andreas Lemmer & Timo Ullrich, 2018. "Effect of Different Operating Temperatures on the Biological Hydrogen Methanation in Trickle Bed Reactors," Energies, MDPI, vol. 11(6), pages 1-11, May.
    2. Westerholm, M. & Isaksson, S. & Karlsson Lindsjö, O. & Schnürer, A., 2018. "Microbial community adaptability to altered temperature conditions determines the potential for process optimisation in biogas production," Applied Energy, Elsevier, vol. 226(C), pages 838-848.
    3. Burkhardt, Marko & Busch, Günter, 2013. "Methanation of hydrogen and carbon dioxide," Applied Energy, Elsevier, vol. 111(C), pages 74-79.
    4. JONES, Bradley & GOOS, Peter, 2012. "I-optimal versus D-optimal split-plot response surface designs," Working Papers 2012002, University of Antwerp, Faculty of Business and Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tuğçe Dağlıoğlu & Tuba Ceren Öğüt & Guven Ozdemir & Nuri Azbar, 2021. "Comparative analysis of the effect of cell immobilization on the hydrogenothrophic biomethanation of CO2," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 493-505, June.
    2. Martin Thema & Tobias Weidlich & Manuel Hörl & Annett Bellack & Friedemann Mörs & Florian Hackl & Matthias Kohlmayer & Jasmin Gleich & Carsten Stabenau & Thomas Trabold & Michael Neubert & Felix Ortlo, 2019. "Biological CO 2 -Methanation: An Approach to Standardization," Energies, MDPI, vol. 12(9), pages 1-32, May.
    3. Voelklein, M.A. & Rusmanis, Davis & Murphy, J.D., 2019. "Biological methanation: Strategies for in-situ and ex-situ upgrading in anaerobic digestion," Applied Energy, Elsevier, vol. 235(C), pages 1061-1071.
    4. Guandalini, Giulio & Campanari, Stefano & Romano, Matteo C., 2015. "Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment," Applied Energy, Elsevier, vol. 147(C), pages 117-130.
    5. Bekkering, J. & Hengeveld, E.J. & van Gemert, W.J.T. & Broekhuis, A.A., 2015. "Will implementation of green gas into the gas supply be feasible in the future?," Applied Energy, Elsevier, vol. 140(C), pages 409-417.
    6. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    7. Díaz, Israel & Fdz-Polanco, Fernando & Mutsvene, Boldwin & Fdz-Polanco, María, 2020. "Effect of operating pressure on direct biomethane production from carbon dioxide and exogenous hydrogen in the anaerobic digestion of sewage sludge," Applied Energy, Elsevier, vol. 280(C).
    8. Andersson, Johanna & Helander-Claesson, Jonas & Olsson, Jesper, 2020. "Study on reduced process temperature for energy optimisation in mesophilic digestion: A lab to full-scale study," Applied Energy, Elsevier, vol. 271(C).
    9. Kovalovszki, Adam & Treu, Laura & Ellegaard, Lars & Luo, Gang & Angelidaki, Irini, 2020. "Modeling temperature response in bioenergy production: Novel solution to a common challenge of anaerobic digestion," Applied Energy, Elsevier, vol. 263(C).
    10. Azize Ayol & Luciana Peixoto & Tugba Keskin & Haris Nalakath Abubackar, 2021. "Reactor Designs and Configurations for Biological and Bioelectrochemical C1 Gas Conversion: A Review," IJERPH, MDPI, vol. 18(21), pages 1-36, November.
    11. Sambo, Francesco & Borrotti, Matteo & Mylona, Kalliopi, 2014. "A coordinate-exchange two-phase local search algorithm for the D- and I-optimal designs of split-plot experiments," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1193-1207.
    12. Lu, Zhihao & Yin, Di & Chen, Peng & Wang, Hongzhen & Yang, Yuhang & Huang, Guangtuan & Cai, Lankun & Zhang, Lehua, 2020. "Power-generating trees: Direct bioelectricity production from plants with microbial fuel cells," Applied Energy, Elsevier, vol. 268(C).
    13. GOOS, Peter & JONES, Bradley & SYAFITRI, Utami, 2013. "I-optimal mixture designs," Working Papers 2013033, University of Antwerp, Faculty of Business and Economics.
    14. Neubert, Michael & Hauser, Alexander & Pourhossein, Babak & Dillig, Marius & Karl, Juergen, 2018. "Experimental evaluation of a heat pipe cooled structured reactor as part of a two-stage catalytic methanation process in power-to-gas applications," Applied Energy, Elsevier, vol. 229(C), pages 289-298.
    15. Ankita Das & Sandeep Das & Nandita Das & Prisha Pandey & Birson Ingti & Vladimir Panchenko & Vadim Bolshev & Andrey Kovalev & Piyush Pandey, 2023. "Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials," Agriculture, MDPI, vol. 13(9), pages 1-34, August.
    16. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    17. Marcin Dutka & Mario Ditaranto & Terese Løvås, 2015. "Application of a Central Composite Design for the Study of NO x Emission Performance of a Low NO x Burner," Energies, MDPI, vol. 8(5), pages 1-22, April.
    18. Néméhie Lawson & Merlin Alvarado-Morales & Panagiotis Tsapekos & Irini Angelidaki, 2021. "Techno-Economic Assessment of Biological Biogas Upgrading Based on Danish Biogas Plants," Energies, MDPI, vol. 14(24), pages 1-18, December.
    19. Joseph Tauber & Andreas Ramsbacher & Karl Svardal & Jörg Krampe, 2021. "Energetic Potential for Biological Methanation in Anaerobic Sewage Sludge Digesters in Austria," Energies, MDPI, vol. 14(20), pages 1-17, October.
    20. Jensen, Mads Bjørnkjær & Kofoed, Michael Vedel Wegener & Fischer, Keelan & Voigt, Niels Vinther & Agneessens, Laura Mia & Batstone, Damien John & Ottosen, Lars Ditlev Mørck, 2018. "Venturi-type injection system as a potential H2 mass transfer technology for full-scale in situ biomethanation," Applied Energy, Elsevier, vol. 222(C), pages 840-846.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4720-:d:1171425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.