IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v150y2021ics136403212100736x.html
   My bibliography  Save this article

How does temperature regulate anaerobic digestion?

Author

Listed:
  • Nie, Erqi
  • He, Pinjing
  • Zhang, Hua
  • Hao, Liping
  • Shao, Liming
  • Lü, Fan

Abstract

Temperature plays a primary role in anaerobic digestion, since it shapes microbial ecosystems, and consequently regulates the stability performance of anaerobic digestion process. Although changes in microbial community and composition at different temperatures have also previously been discussed in some experimental studies. However, until now, this aspect of the regulation of the temperature gradient on microbial communities have not yet well been reviewed. Additionally, these previous studies did not observe the classical three-peak model regarding methane production rates owing to limitations to the temperature range and the broad gradient interval. Furthermore, some microorganisms that lived at “extreme” temperatures have been reported in some previous studies, it provides a possibility for industrial applications of anaerobic digestion in cold regions or for sanitation purposes on the basis of deciphering the mechanism of their adaption. This survey aims to shove the boundaries a little further summarizing an overview of the microbial responses to the fermentation temperature gradient in each step (including hydrolysis, acidification, and methanogenesis) of the anaerobic digestion process and investigated the mechanism of adaption to extreme temperature regimes. Overall, this review covers discussion on microorganisms’ responses to broad temperature gradient, together with mechanism to adapted extreme temperature by regulating the conformation transition of their DNA, protein, and specialized enzymes.

Suggested Citation

  • Nie, Erqi & He, Pinjing & Zhang, Hua & Hao, Liping & Shao, Liming & Lü, Fan, 2021. "How does temperature regulate anaerobic digestion?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:rensus:v:150:y:2021:i:c:s136403212100736x
    DOI: 10.1016/j.rser.2021.111453
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212100736X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kovalovszki, Adam & Treu, Laura & Ellegaard, Lars & Luo, Gang & Angelidaki, Irini, 2020. "Modeling temperature response in bioenergy production: Novel solution to a common challenge of anaerobic digestion," Applied Energy, Elsevier, vol. 263(C).
    2. Jonathan Lambert, 2019. "Scientists glimpse oddball microbe that could help explain rise of complex life," Nature, Nature, vol. 572(7769), pages 294-294, August.
    3. Deng, Liangwei & Yang, Hongnan & Liu, Gangjin & Zheng, Dan & Chen, Ziai & Liu, Yi & Pu, Xiaodong & Song, Li & Wang, Zhiyong & Lei, Yunhui, 2014. "Kinetics of temperature effects and its significance to the heating strategy for anaerobic digestion of swine wastewater," Applied Energy, Elsevier, vol. 134(C), pages 349-355.
    4. Tian, Guangliang & Yang, Bin & Dong, Minghua & Zhu, Rui & Yin, Fang & Zhao, Xingling & Wang, Yongxia & Xiao, Wei & Wang, Qiang & Zhang, Wudi & Cui, Xiaolong, 2018. "The effect of temperature on the microbial communities of peak biogas production in batch biogas reactors," Renewable Energy, Elsevier, vol. 123(C), pages 15-25.
    5. Wei, Jing & Hao, Xiaodi & van Loosdrecht, Mark C.M. & Li, Ji, 2018. "Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 16-26.
    6. Westerholm, M. & Isaksson, S. & Karlsson Lindsjö, O. & Schnürer, A., 2018. "Microbial community adaptability to altered temperature conditions determines the potential for process optimisation in biogas production," Applied Energy, Elsevier, vol. 226(C), pages 838-848.
    7. Dev, Subhabrata & Saha, Shouvik & Kurade, Mayur B. & Salama, El-Sayed & El-Dalatony, Marwa M. & Ha, Geon-Soo & Chang, Soon Woong & Jeon, Byong-Hun, 2019. "Perspective on anaerobic digestion for biomethanation in cold environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 85-95.
    8. Li, Yue & Chen, Yinguang & Wu, Jiang, 2019. "Enhancement of methane production in anaerobic digestion process: A review," Applied Energy, Elsevier, vol. 240(C), pages 120-137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Renata Toczyłowska-Mamińska & Mariusz Ł. Mamiński, 2022. "Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology," Energies, MDPI, vol. 15(19), pages 1-14, September.
    2. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Marialuisa Napolitano & Maria Vicidomini, 2023. "Dynamic Simulation and Thermoeconomic Analysis of a Novel Hybrid Solar System for Biomethane Production by the Organic Fraction of Municipal Wastes," Energies, MDPI, vol. 16(6), pages 1-23, March.
    3. Dulatbay Yerassyl & Yu Jin & Sugirbaeva Zhanar & Kazambayeva Aigul & Yessengaliyeva Saltanat, 2022. "The Current Status and Lost Biogas Production Potential of Kazakhstan from Anaerobic Digestion of Livestock and Poultry Manure," Energies, MDPI, vol. 15(9), pages 1-11, April.
    4. Peng, Wei & Beggio, Giovanni & Pivato, Alberto & Zhang, Hua & Lü, Fan & He, Pinjing, 2022. "Applications of near infrared spectroscopy and hyperspectral imaging techniques in anaerobic digestion of bio-wastes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Dynamic analysis and investigation of the thermal transient effects in a CSTR reactor producing biogas," Energy, Elsevier, vol. 263(PE).
    6. Marcin Zieliński & Joanna Kazimierowicz & Marcin Dębowski, 2022. "Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations," Energies, MDPI, vol. 16(1), pages 1-39, December.
    7. Akindolire, Muyiwa Ajoke & Rama, Haripriya & Roopnarain, Ashira, 2022. "Psychrophilic anaerobic digestion: A critical evaluation of microorganisms and enzymes to drive the process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akindolire, Muyiwa Ajoke & Rama, Haripriya & Roopnarain, Ashira, 2022. "Psychrophilic anaerobic digestion: A critical evaluation of microorganisms and enzymes to drive the process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    4. Sharvini, Siva Raman & Noor, Zainura Zainon & Chong, Chun Shiong & Stringer, Lindsay C & Glew, David, 2020. "Energy generation from palm oil mill effluent: A life cycle assessment of two biogas technologies," Energy, Elsevier, vol. 191(C).
    5. Huang, Bao-Cheng & He, Chuan-Shu & Fan, Nian-Si & Jin, Ren-Cun & Yu, Han-Qing, 2020. "Envisaging wastewater-to-energy practices for sustainable urban water pollution control: Current achievements and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Liu, Jianfeng & Tang, Zhengkang & Wang, Changmei & Wu, Kai & Song, Yuanlin & Wang, Xingping & Zhang, Zhiwen & Zhao, Xingling & Yang, Bin & Piao, Mingguo & Yin, Fang & Zhang, Wudi, 2021. "Novel technique for sustainable utilisation of water hyacinth using EGSB and MCSTR: Control overgrowth, energy recovery, and microbial metabolic mechanism," Renewable Energy, Elsevier, vol. 163(C), pages 1701-1710.
    7. Ferraz de Campos, Victor Arruda & Silva, Valter Bruno & Cardoso, João Sousa & Brito, Paulo S. & Tuna, Celso Eduardo & Silveira, José Luz, 2021. "A review of waste management in Brazil and Portugal: Waste-to-energy as pathway for sustainable development," Renewable Energy, Elsevier, vol. 178(C), pages 802-820.
    8. Jaime Jaimes-Estévez & German Zafra & Jaime Martí-Herrero & Guillermo Pelaz & Antonio Morán & Alejandra Puentes & Christian Gomez & Liliana del Pilar Castro & Humberto Escalante Hernández, 2020. "Psychrophilic Full Scale Tubular Digester Operating over Eight Years: Complete Performance Evaluation and Microbiological Population," Energies, MDPI, vol. 14(1), pages 1-17, December.
    9. Arora, Amarpreet Singh & Nawaz, Alam & Qyyum, Muhammad Abdul & Ismail, Sherif & Aslam, Muhammad & Tawfik, Ahmed & Yun, Choa Mun & Lee, Moonyong, 2021. "Energy saving anammox technology-based nitrogen removal and bioenergy recovery from wastewater: Inhibition mechanisms, state-of-the-art control strategies, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Zang, Xiaoya & Wang, Jing & He, Yong & Zhou, Xuebing & Liang, Deqing, 2022. "Experimental investigation of hydrate formation kinetics and microscopic properties by a synthesized ternary gas mixture with combination additives," Energy, Elsevier, vol. 259(C).
    11. Hajizadeh, Abdollah & Mohamadi-Baghmolaei, Mohamad & Cata Saady, Noori M. & Zendehboudi, Sohrab, 2022. "Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming," Applied Energy, Elsevier, vol. 309(C).
    12. Ahmadi, Ehsan & Yousefzadeh, Samira & Mokammel, Adel & Miri, Mohammad & Ansari, Mohsen & Arfaeinia, Hossein & Badi, Mojtaba Yegane & Ghaffari, Hamid Reza & Rezaei, Soheila & Mahvi, Amir Hossein, 2020. "Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    13. Maria Salud Camilleri-Rumbau & Kelly Briceño & Lene Fjerbæk Søtoft & Knud Villy Christensen & Maria Cinta Roda-Serrat & Massimiliano Errico & Birgir Norddahl, 2021. "Treatment of Manure and Digestate Liquid Fractions Using Membranes: Opportunities and Challenges," IJERPH, MDPI, vol. 18(6), pages 1-30, March.
    14. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Musa Manga & Christian Aragón-Briceño & Panagiotis Boutikos & Swaib Semiyaga & Omotunde Olabinjo & Chimdi C. Muoghalu, 2023. "Biochar and Its Potential Application for the Improvement of the Anaerobic Digestion Process: A Critical Review," Energies, MDPI, vol. 16(10), pages 1-23, May.
    16. Adele Folino & Demetrio Antonio Zema & Paolo S. Calabrò, 2020. "Environmental and Economic Sustainability of Swine Wastewater Treatments Using Ammonia Stripping and Anaerobic Digestion: A Short Review," Sustainability, MDPI, vol. 12(12), pages 1-28, June.
    17. Guimarães de Oliveira, Maurício & Marques Mourão, José Marcos & Marques de Oliveira, Ana Katherinne & Bezerra dos Santos, André & Lopes Pereira, Erlon, 2021. "Microaerophilic treatment enhanced organic matter removal and methane production rates during swine wastewater treatment: A long-term engineering evaluation," Renewable Energy, Elsevier, vol. 180(C), pages 691-699.
    18. Tian, Guangliang & Yang, Bin & Dong, Minghua & Zhu, Rui & Yin, Fang & Zhao, Xingling & Wang, Yongxia & Xiao, Wei & Wang, Qiang & Zhang, Wudi & Cui, Xiaolong, 2018. "The effect of temperature on the microbial communities of peak biogas production in batch biogas reactors," Renewable Energy, Elsevier, vol. 123(C), pages 15-25.
    19. Andersson, Johanna & Helander-Claesson, Jonas & Olsson, Jesper, 2020. "Study on reduced process temperature for energy optimisation in mesophilic digestion: A lab to full-scale study," Applied Energy, Elsevier, vol. 271(C).
    20. Kovalovszki, Adam & Treu, Laura & Ellegaard, Lars & Luo, Gang & Angelidaki, Irini, 2020. "Modeling temperature response in bioenergy production: Novel solution to a common challenge of anaerobic digestion," Applied Energy, Elsevier, vol. 263(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:150:y:2021:i:c:s136403212100736x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.