IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v177y2021icp1321-1332.html
   My bibliography  Save this article

Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition

Author

Listed:
  • Tian, Wenjing
  • Li, Jianhao
  • Zhu, Lirong
  • Li, Wen
  • He, Linyan
  • Gu, Li
  • Deng, Rui
  • Shi, Dezhi
  • Chai, Hongxiang
  • Gao, Meng

Abstract

Recent investigations verified CaO2 accelerated hydrolysis of lignocellulose, but its residue caused a harmful oxidizing environment. This study therefore proposed the combined CaO2 pretreatment and zero-valent iron (ZVI) addition to enhance high-solid anaerobic digestion of wheat straw, trying to eliminate negative effect of residual oxides. Effects of CaO2 pretreatment without/with ZVI addition on digestion performance were investigated. Results showed that in non-ZVI added digesters, as CaO2 dosage increased, total production of SCOD and VFAs increased linearly, while activities of coenzyme F420 and electron transport system were negatively correlated. Pretreatment using appropriate CaO2 dosage indirectly increased biogas production by promoting hydrolysis and acidification. Comparably, initial ORP in ZVI-added digesters sharply declined below −350 mV, which was suitable for methanogen growth. ZVI significantly improved activities of cellulase, hemicellulase, acetic kinase and coenzyme F420, with the highest improvement percentages of 138%, 48%, 35% and 58%, respectively. Since ZVI could provide electrons for conversion of CO2 to CH4, compared with non-ZVI added digesters (R0-R4), methane content in ZVI-added digesters (RZ0-RZ4) increased by 8.1%, 9.0%, 11.2%, 17.0% and 18.0% successively. Consequently, 0.6 g/g VS CaO2 pretreatment combined with 0.4 g/g VS ZVI addition achieved the maximum methane production, increasing by 35.6% compared to control digester.

Suggested Citation

  • Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
  • Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:1321-1332
    DOI: 10.1016/j.renene.2021.06.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121009083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.06.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khatri, Shailendra & Wu, Shubiao & Kizito, Simon & Zhang, Wanqin & Li, Jiaxi & Dong, Renjie, 2015. "Synergistic effect of alkaline pretreatment and Fe dosing on batch anaerobic digestion of maize straw," Applied Energy, Elsevier, vol. 158(C), pages 55-64.
    2. Fan Zhang, 2019. "In the Dark," World Bank Publications - Books, The World Bank Group, number 30923, December.
    3. Liang, Jinsong & Nabi, Mohammad & Zhang, Panyue & Zhang, Guangming & Cai, Yajing & Wang, Qingyan & Zhou, Zeyan & Ding, Yiran, 2020. "Promising biological conversion of lignocellulosic biomass to renewable energy with rumen microorganisms: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Wang, Jie & Li, Yongmei, 2016. "Synergistic pretreatment of waste activated sludge using CaO2 in combination with microwave irradiation to enhance methane production during anaerobic digestion," Applied Energy, Elsevier, vol. 183(C), pages 1123-1132.
    5. Srisowmeya, G. & Chakravarthy, M. & Nandhini Devi, G., 2020. "Critical considerations in two-stage anaerobic digestion of food waste – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Díaz, Israel & Fdz-Polanco, Fernando & Mutsvene, Boldwin & Fdz-Polanco, María, 2020. "Effect of operating pressure on direct biomethane production from carbon dioxide and exogenous hydrogen in the anaerobic digestion of sewage sludge," Applied Energy, Elsevier, vol. 280(C).
    7. Kafle, Gopi Krishna & Kim, Sang Hun, 2013. "Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation," Applied Energy, Elsevier, vol. 103(C), pages 61-72.
    8. Shamurad, Burhan & Sallis, Paul & Petropoulos, Evangelos & Tabraiz, Shamas & Ospina, Carolina & Leary, Peter & Dolfing, Jan & Gray, Neil, 2020. "Stable biogas production from single-stage anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 263(C).
    9. Pohl, Marcel & Sánchez-Sánchez, Maria & Mumme, Jan, 2019. "Anaerobic digestion of wheat straw and rape oil cake in a two-stage solid-state system," Renewable Energy, Elsevier, vol. 141(C), pages 359-367.
    10. Yu, Qiong & Liu, Ronghou & Li, Kun & Ma, Ruijie, 2019. "A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 51-58.
    11. Jiang, Xinyuan & Sommer, Sven G. & Christensen, Knud V., 2011. "A review of the biogas industry in China," Energy Policy, Elsevier, vol. 39(10), pages 6073-6081, October.
    12. Ma, Lei & Zhou, Lei & Mbadinga, Serge Maurice & Gu, Ji-Dong & Mu, Bo-Zhong, 2018. "Accelerated CO2 reduction to methane for energy by zero valent iron in oil reservoir production waters," Energy, Elsevier, vol. 147(C), pages 663-671.
    13. Mirmohamadsadeghi, Safoora & Karimi, Keikhosro & Azarbaijani, Reza & Parsa Yeganeh, Laleh & Angelidaki, Irini & Nizami, Abdul-Sattar & Bhat, Rajeev & Dashora, Kavya & Vijay, Virendra Kumar & Aghbashlo, 2021. "Pretreatment of lignocelluloses for enhanced biogas production: A review on influencing mechanisms and the importance of microbial diversity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Li, Yue & Chen, Yinguang & Wu, Jiang, 2019. "Enhancement of methane production in anaerobic digestion process: A review," Applied Energy, Elsevier, vol. 240(C), pages 120-137.
    15. Di Capua, Francesco & Spasiano, Danilo & Giordano, Andrea & Adani, Fabrizio & Fratino, Umberto & Pirozzi, Francesco & Esposito, Giovanni, 2020. "High-solid anaerobic digestion of sewage sludge: challenges and opportunities," Applied Energy, Elsevier, vol. 278(C).
    16. Behera, Shuvashish & Arora, Richa & Nandhagopal, N. & Kumar, Sachin, 2014. "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 91-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Paglini & Marta Gandiglio & Andrea Lanzini, 2022. "Technologies for Deep Biogas Purification and Use in Zero-Emission Fuel Cells Systems," Energies, MDPI, vol. 15(10), pages 1-30, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Wang, Xuezhi & Lei, Zhongfang & Shimizu, Kazuya & Zhang, Zhenya & Lee, Duu-Jong, 2021. "Recent advancements in nanobubble water technology and its application in energy recovery from organic solid wastes towards a greater environmental friendliness of anaerobic digestion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    5. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    6. Zheng, Zehui & Liu, Jinhuan & Yuan, Xufeng & Wang, Xiaofen & Zhu, Wanbin & Yang, Fuyu & Cui, Zongjun, 2015. "Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion," Applied Energy, Elsevier, vol. 151(C), pages 249-257.
    7. Marie-Noël Mansour & Thomas Lendormi & Nicolas Louka & Richard G. Maroun & Zeina Hobaika & Jean-Louis Lanoisellé, 2023. "Anaerobic Digestion of Poultry Droppings in Semi-Continuous Mode and Effect of Their Co-Digestion with Physico-Chemical Sludge on Methane Yield," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    8. Ma, Shuaishuai & Wang, Hongliang & Li, Longrui & Gu, Xiaohui & Zhu, Wanbin, 2021. "Enhanced biomethane production from corn straw by a novel anaerobic digestion strategy with mechanochemical pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Amílcar Díaz-González & Magdalena Yeraldi Perez Luna & Erik Ramírez Morales & Sergio Saldaña-Trinidad & Lizeth Rojas Blanco & Sergio de la Cruz-Arreola & Bianca Yadira Pérez-Sariñana & José Billerman , 2022. "Assessment of the Pretreatments and Bioconversion of Lignocellulosic Biomass Recovered from the Husk of the Cocoa Pod," Energies, MDPI, vol. 15(10), pages 1-17, May.
    10. Pengcheng Liu & Yunxia Pan, 2023. "The Improvement of Rice Straw Anaerobic Co-Digestion with Swine Wastewater by Solar/Fe(II)/PS Pretreatment," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    11. Gao, Zhenghui & Alshehri, Khaled & Li, Yuan & Qian, Hang & Sapsford, Devin & Cleall, Peter & Harbottle, Michael, 2022. "Advances in biological techniques for sustainable lignocellulosic waste utilization in biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    12. Ombretta Paladino, 2022. "Data Driven Modelling and Control Strategies to Improve Biogas Quality and Production from High Solids Anaerobic Digestion: A Mini Review," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    13. Soares, Juliana Ferreira & Confortin, Tássia Carla & Todero, Izelmar & Mayer, Flávio Dias & Mazutti, Marcio Antonio, 2020. "Dark fermentative biohydrogen production from lignocellulosic biomass: Technological challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    14. Wang, Zhongzhong & Hu, Yuansheng & Wang, Shun & Wu, Guangxue & Zhan, Xinmin, 2023. "A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    15. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    16. Zhao, Ning & You, Fengqi, 2021. "Food-energy-water-waste nexus systems optimization for New York State under the COVID-19 pandemic to alleviate health and environmental concerns," Applied Energy, Elsevier, vol. 282(PA).
    17. Kumar, Subodh & Paritosh, Kunwar & Pareek, Nidhi & Chawade, Aakash & Vivekanand, Vivekanand, 2018. "De-construction of major Indian cereal crop residues through chemical pretreatment for improved biogas production: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 160-170.
    18. Zhang, Wanqin & Wei, Quanyuan & Wu, Shubiao & Qi, Dandan & Li, Wei & Zuo, Zhuang & Dong, Renjie, 2014. "Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions," Applied Energy, Elsevier, vol. 128(C), pages 175-183.
    19. Osman, Ahmed I. & Qasim, Umair & Jamil, Farrukh & Al-Muhtaseb, Ala'a H. & Jrai, Ahmad Abu & Al-Riyami, Mohammed & Al-Maawali, Suhaib & Al-Haj, Lamya & Al-Hinai, Amer & Al-Abri, Mohammed & Inayat, Abra, 2021. "Bioethanol and biodiesel: Bibliometric mapping, policies and future needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Zhao, Jiamin & Hou, Tingting & Wang, Qian & Zhang, Zhenya & Lei, Zhongfang & Shimizu, Kazuya & Guo, Wenshan & Ngo, Huu Hao, 2021. "Application of biogas recirculation in anaerobic granular sludge system for multifunctional sewage sludge management with high efficacy energy recovery," Applied Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:177:y:2021:i:c:p:1321-1332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.