IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123014799.html
   My bibliography  Save this article

Composite nanofiber membranes to enhance the performance of high solids anaerobic digestion of organic rural household waste resources

Author

Listed:
  • Liu, Yang
  • Xi, Yonglan
  • Ye, Xiaomei
  • Zhang, Yingpeng
  • Wang, Chengcheng
  • Jia, Zhaoyan
  • Cao, Chunhui
  • Han, Ting
  • Du, Jing
  • Kong, Xiangping
  • Chen, Zhongbing

Abstract

This study investigated the effect of using nanofiber membrane composites containing Prussian blue-like compound nanoparticles (PNPs) with a stainless steel mesh as the carrier (NMCs) to relieve ammonia nitrogen inhibition of rural organic household waste during high-solid (total solid content of 15 %) anaerobic digestion (AD) and increase methane production. NMCs with different PNP contents were added to high-solid AD. When NMC with 15 % PNPs was added, the concentrations of volatile fatty acids and ammonia nitrogen were lower than those of the blank control group, and the methane yield was the highest (301.31 mL/g volatile solids [VS]), at 2.8 times higher than that of the blank control group. The R2 value of the modified Gompertz equation was 0.997. During digestion, the activities of extracellular protease and coenzyme F420 were higher than those of the control group. NMCs were successfully recovered at the end of the experiment, and confocal scanning three-dimensional electron micrographs indicated that NMC with 15 % PNPs of NMCs had stronger biological activity; microbial community structure analysis indicated increased abundance of hydrogenotrophic methanogens in this group. The study provides a new solution for improving the efficiency of biogas production and the recycling of exogenously added materials.

Suggested Citation

  • Liu, Yang & Xi, Yonglan & Ye, Xiaomei & Zhang, Yingpeng & Wang, Chengcheng & Jia, Zhaoyan & Cao, Chunhui & Han, Ting & Du, Jing & Kong, Xiangping & Chen, Zhongbing, 2024. "Composite nanofiber membranes to enhance the performance of high solids anaerobic digestion of organic rural household waste resources," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123014799
    DOI: 10.1016/j.renene.2023.119564
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123014799
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Yapeng & Hu, Wanrong & Qiao, Wei & Westerholm, Maria & Wandera, Simon M. & Dong, Renjie, 2022. "Upgrading the performance of high solids feeding anaerobic digestion of chicken manure under extremely high ammonia level," Renewable Energy, Elsevier, vol. 194(C), pages 13-20.
    2. Gianluca Caposciutti & Andrea Baccioli & Lorenzo Ferrari & Umberto Desideri, 2020. "Biogas from Anaerobic Digestion: Power Generation or Biomethane Production?," Energies, MDPI, vol. 13(3), pages 1-15, February.
    3. Gelegenis, John & Georgakakis, Dimitris & Angelidaki, Irini & Christopoulou, Nicholetta & Goumenaki, Maria, 2007. "Optimization of biogas production from olive-oil mill wastewater, by codigesting with diluted poultry-manure," Applied Energy, Elsevier, vol. 84(6), pages 646-663, June.
    4. Capson-Tojo, G. & Moscoviz, R. & Astals, S. & Robles, Á. & Steyer, J.-P., 2020. "Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    5. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svetlana Zueva & Andrey A. Kovalev & Yury V. Litti & Nicolò M. Ippolito & Valentina Innocenzi & Ida De Michelis, 2021. "Environmental and Economic Aspects of Biomethane Production from Organic Waste in Russia," Energies, MDPI, vol. 14(17), pages 1-8, August.
    2. Bi, Shaojie & Westerholm, Maria & Hu, Wanrong & Mahdy, Ahmed & Dong, Taili & Sun, Yingcai & Qiao, Wei & Dong, Renjie, 2021. "The metabolic performance and microbial communities of anaerobic digestion of chicken manure under stressed ammonia condition: A case study of a 10-year successful biogas plant," Renewable Energy, Elsevier, vol. 167(C), pages 644-651.
    3. Yapeng Song & Wei Qiao & Jiahao Zhang & Renjie Dong, 2023. "Process Performance and Functional Microbial Community in the Anaerobic Digestion of Chicken Manure: A Review," Energies, MDPI, vol. 16(12), pages 1-22, June.
    4. Krzysztof Gaska & Agnieszka Generowicz & Anna Gronba-Chyła & Józef Ciuła & Iwona Wiewiórska & Paweł Kwaśnicki & Marcin Mala & Krzysztof Chyła, 2023. "Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change," Energies, MDPI, vol. 16(15), pages 1-19, July.
    5. Martinez, E. & Marcos, A. & Al-Kassir, A. & Jaramillo, M.A. & Mohamad, A.A., 2012. "Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production," Applied Energy, Elsevier, vol. 95(C), pages 210-219.
    6. Chandra, R. & Vijay, V.K. & Subbarao, P.M.V. & Khura, T.K., 2012. "Production of methane from anaerobic digestion of jatropha and pongamia oil cakes," Applied Energy, Elsevier, vol. 93(C), pages 148-159.
    7. Roberto Paglini & Marta Gandiglio & Andrea Lanzini, 2022. "Technologies for Deep Biogas Purification and Use in Zero-Emission Fuel Cells Systems," Energies, MDPI, vol. 15(10), pages 1-30, May.
    8. Usama Konbr & Walid Bayoumi & Mohamed N. Ali & Ahmed Salah Eldin Shiba, 2022. "Sustainability of Egyptian Cities through Utilizing Sewage and Sludge in Softscaping and Biogas Production," Sustainability, MDPI, vol. 14(11), pages 1-14, May.
    9. Behera, Shuvashish & Arora, Richa & Nandhagopal, N. & Kumar, Sachin, 2014. "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 91-106.
    10. Aravani, Vasiliki P. & Sun, Hangyu & Yang, Ziyi & Liu, Guangqing & Wang, Wen & Anagnostopoulos, George & Syriopoulos, George & Charisiou, Nikolaos D. & Goula, Maria A. & Kornaros, Michael & Papadakis,, 2022. "Agricultural and livestock sector's residues in Greece & China: Comparative qualitative and quantitative characterization for assessing their potential for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Kougias, P.G. & Kotsopoulos, T.A. & Martzopoulos, G.G., 2014. "Effect of feedstock composition and organic loading rate during the mesophilic co-digestion of olive mill wastewater and swine manure," Renewable Energy, Elsevier, vol. 69(C), pages 202-207.
    12. Orlando Corigliano & Marco Iannuzzi & Crescenzo Pellegrino & Francesco D’Amico & Leonardo Pagnotta & Petronilla Fragiacomo, 2023. "Enhancing Energy Processes and Facilities Redesign in an Anaerobic Digestion Plant for Biomethane Production," Energies, MDPI, vol. 16(15), pages 1-29, August.
    13. Siqi Zuo & Xiaoqin Zhou & Zifu Li & Xuemei Wang & Longbin Yu, 2021. "Investigation on Recycling Dry Toilet Generated Blackwater by Anaerobic Digestion: From Energy Recovery to Sanitation," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
    14. Long Zhang & Jingzheng Ren & Wuliyasu Bai, 2023. "A Review of Poultry Waste-to-Wealth: Technological Progress, Modeling and Simulation Studies, and Economic- Environmental and Social Sustainability," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    15. Di Capua, Francesco & Spasiano, Danilo & Giordano, Andrea & Adani, Fabrizio & Fratino, Umberto & Pirozzi, Francesco & Esposito, Giovanni, 2020. "High-solid anaerobic digestion of sewage sludge: challenges and opportunities," Applied Energy, Elsevier, vol. 278(C).
    16. German Smetana & Ewa Neczaj & Anna Grosser, 2021. "Biomethane Potential of Selected Organic Waste and Sewage Sludge at Different Temperature Regimes," Energies, MDPI, vol. 14(14), pages 1-18, July.
    17. Brown, N. & Güttler, J. & Shilton, A., 2016. "Overcoming the challenges of full scale anaerobic co-digestion of casein whey," Renewable Energy, Elsevier, vol. 96(PA), pages 425-432.
    18. Nicola Di Costanzo & Alessandra Cesaro & Francesco Di Capua & Giovanni Esposito, 2021. "Exploiting the Nutrient Potential of Anaerobically Digested Sewage Sludge: A Review," Energies, MDPI, vol. 14(23), pages 1-25, December.
    19. Aristide Giuliano, 2023. "The Transition of Scientific Research from Biomass-to-Energy/Biofuels to Biomass-to-Biochemicals in a Biorefinery Systems Framework," Energies, MDPI, vol. 16(5), pages 1-4, February.
    20. Koch, Konrad & Helmreich, Brigitte & Drewes, Jörg E., 2015. "Co-digestion of food waste in municipal wastewater treatment plants: Effect of different mixtures on methane yield and hydrolysis rate constant," Applied Energy, Elsevier, vol. 137(C), pages 250-255.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123014799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.