IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5782-d1209852.html
   My bibliography  Save this article

Enhancing Energy Processes and Facilities Redesign in an Anaerobic Digestion Plant for Biomethane Production

Author

Listed:
  • Orlando Corigliano

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036 Rende, Cosenza, Italy)

  • Marco Iannuzzi

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036 Rende, Cosenza, Italy)

  • Crescenzo Pellegrino

    (Waste to Methane, 87036 Rende, Cosenza, Italy)

  • Francesco D’Amico

    (Waste to Methane, 87036 Rende, Cosenza, Italy)

  • Leonardo Pagnotta

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036 Rende, Cosenza, Italy)

  • Petronilla Fragiacomo

    (Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036 Rende, Cosenza, Italy)

Abstract

The energy revolution prioritizes efficiency, sustainability, practicality, and concreteness. Conventional energy processes remain crucial and will continue to be essential for a long time if they are based on renewable and clean sources. Biofuels, particularly biomethane, are gaining significant attention for their potential to replace fossil fuels and contribute to a greener energy landscape. This paper focuses on enhancing the energy efficiency of an anaerobic digestion plant for biomethane production. Oversizing issues in technical plants often result in excessive energy and economic costs. Therefore, this study aims to analyze plant sections that can be improved to enhance performance. An energy analysis quantifies the energy requirements for different sections and sub-sections, guiding the selection of energy interventions such as pipeline resizing, heat generator modifications, pump enhancements, and energy recovery opportunities. The methodology is applied to an existing biomethane plant, and graphical software is used for redesigning the heat generator, pumps, and pipelines. The results demonstrated that implementing energy efficiency measures improves system performance. The heat generator’s capacity was successfully reduced by 100 kW, surpassing the initial design choice. Additionally, heat recovery from the biogas compression section has enhanced the overall thermal dynamics of the system. The estimated annual methane consumption in the boiler is approximately 12,000 Nm 3 , resulting in an expenditure of EUR 10600. These interventions have led to substantial savings, totaling EUR 133000 for the comprehensive thermal sustenance of the entire plant.

Suggested Citation

  • Orlando Corigliano & Marco Iannuzzi & Crescenzo Pellegrino & Francesco D’Amico & Leonardo Pagnotta & Petronilla Fragiacomo, 2023. "Enhancing Energy Processes and Facilities Redesign in an Anaerobic Digestion Plant for Biomethane Production," Energies, MDPI, vol. 16(15), pages 1-29, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5782-:d:1209852
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5782/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5782/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Calbry-Muzyka, Adelaide & Madi, Hossein & Rüsch-Pfund, Florian & Gandiglio, Marta & Biollaz, Serge, 2022. "Biogas composition from agricultural sources and organic fraction of municipal solid waste," Renewable Energy, Elsevier, vol. 181(C), pages 1000-1007.
    2. Piotr Sulewski & Wiktor Ignaciuk & Magdalena Szymańska & Adam Wąs, 2023. "Development of the Biomethane Market in Europe," Energies, MDPI, vol. 16(4), pages 1-34, February.
    3. Luo, Tao & Khoshnevisan, Benyamin & Pan, Junting & Ge, Yihong & Mei, Zili & Xue, Jian & Fu, Yanran & Liu, Hongbin, 2020. "How exothermic characteristics of rice straw during anaerobic digestion affects net energy production," Energy, Elsevier, vol. 212(C).
    4. Francesco Calise & Francesco Liberato Cappiello & Massimo Dentice d’Accadia & Alessandra Infante & Maria Vicidomini, 2020. "Modeling of the Anaerobic Digestion of Organic Wastes: Integration of Heat Transfer and Biochemical Aspects," Energies, MDPI, vol. 13(11), pages 1-23, May.
    5. Jingura, Raphael M. & Matengaifa, Rutendo, 2009. "Optimization of biogas production by anaerobic digestion for sustainable energy development in Zimbabwe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1116-1120, June.
    6. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2021. "A Review of the State of the Art of Biomethane Production: Recent Advancements and Integration of Renewable Energies," Energies, MDPI, vol. 14(16), pages 1-43, August.
    7. Gianluca Caposciutti & Andrea Baccioli & Lorenzo Ferrari & Umberto Desideri, 2020. "Biogas from Anaerobic Digestion: Power Generation or Biomethane Production?," Energies, MDPI, vol. 13(3), pages 1-15, February.
    8. Zupančič, G.D. & Roš, M., 2003. "Heat and energy requirements in thermophilic anaerobic sludge digestion," Renewable Energy, Elsevier, vol. 28(14), pages 2255-2267.
    9. Khadija Sarquah & Satyanarayana Narra & Gesa Beck & Uduak Bassey & Edward Antwi & Michael Hartmann & Nana Sarfo Agyemang Derkyi & Edward A. Awafo & Michael Nelles, 2022. "Characterization of Municipal Solid Waste and Assessment of Its Potential for Refuse-Derived Fuel (RDF) Valorization," Energies, MDPI, vol. 16(1), pages 1-15, December.
    10. Scarlat, Nicolae & Dallemand, Jean-François & Fahl, Fernando, 2018. "Biogas: Developments and perspectives in Europe," Renewable Energy, Elsevier, vol. 129(PA), pages 457-472.
    11. Orlando Corigliano & Leonardo Pagnotta & Petronilla Fragiacomo, 2022. "On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review," Sustainability, MDPI, vol. 14(22), pages 1-73, November.
    12. Grzegorz Bartnicki & Piotr Ziembicki & Marcin Klimczak & Agnieszka Kalitka, 2022. "The Potential of Heat Recovery from Wastewater Considering the Protection of Wastewater Treatment Plant Technology," Energies, MDPI, vol. 16(1), pages 1-15, December.
    13. Stefan Schützenhofer & Iva Kovacic & Helmut Rechberger & Stephanie Mack, 2022. "Improvement of Environmental Sustainability and Circular Economy through Construction Waste Management for Material Reuse," Sustainability, MDPI, vol. 14(17), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Herkowiak & Mariusz Adamski & Przemysław Marek & Zbigniew Jarosz & Magdalena Kapłan & Kamila Klimek & Grzegorz Wałowski, 2023. "Assessing the Impact of Modifying the Fuel System of a Small Power Generator on Exhaust Emissions—A Case Study," Energies, MDPI, vol. 16(22), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adhirath Mandal & Haengmuk Cho & Bhupendra Singh Chauhan, 2021. "ANN Prediction of Performance and Emissions of CI Engine Using Biogas Flow Variation," Energies, MDPI, vol. 14(10), pages 1-18, May.
    2. Prajapati, Kalp Bhusan & Singh, Rajesh, 2020. "Enhancement of biogas production in bio-electrochemical digester from agricultural waste mixed with wastewater," Renewable Energy, Elsevier, vol. 146(C), pages 460-468.
    3. Francesco Liberato Cappiello & Luca Cimmino & Marialuisa Napolitano & Maria Vicidomini, 2022. "Thermoeconomic Analysis of Biomethane Production Plants: A Dynamic Approach," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    4. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Dynamic analysis and investigation of the thermal transient effects in a CSTR reactor producing biogas," Energy, Elsevier, vol. 263(PE).
    5. Alonso Albalate-Ramírez & Mónica María Alcalá-Rodríguez & Luis Ramiro Miramontes-Martínez & Alejandro Padilla-Rivera & Alejandro Estrada-Baltazar & Brenda Nelly López-Hernández & Pasiano Rivas-García, 2022. "Energy Production from Cattle Manure within a Life Cycle Assessment Framework: Statistical Optimization of Co-Digestion, Pretreatment, and Thermal Conditions," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    6. Kamila Klimek & Magdalena Kapłan & Serhiy Syrotyuk & Nikolay Bakach & Nikolay Kapustin & Ryszard Konieczny & Jakub Dobrzyński & Kinga Borek & Dorota Anders & Barbara Dybek & Agnieszka Karwacka & Grzeg, 2021. "Investment Model of Agricultural Biogas Plants for Individual Farms in Poland," Energies, MDPI, vol. 14(21), pages 1-30, November.
    7. Tiwari, Prince & Wang, Tiantian & Indlekofer, Julian & El Haddad, Imad & Biollaz, Serge & Prevot, Andre Stephan Henry & Lamkaddam, Houssni, 2022. "Online detection of trace volatile organic sulfur compounds in a complex biogas mixture with proton-transfer-reaction mass spectrometry," Renewable Energy, Elsevier, vol. 196(C), pages 1197-1203.
    8. Svetlana Zueva & Andrey A. Kovalev & Yury V. Litti & Nicolò M. Ippolito & Valentina Innocenzi & Ida De Michelis, 2021. "Environmental and Economic Aspects of Biomethane Production from Organic Waste in Russia," Energies, MDPI, vol. 14(17), pages 1-8, August.
    9. Piotr Sulewski & Wiktor Ignaciuk & Magdalena Szymańska & Adam Wąs, 2023. "Development of the Biomethane Market in Europe," Energies, MDPI, vol. 16(4), pages 1-34, February.
    10. Omar, M.N. & Samak, A.A. & Keshek, M.H. & Elsisi, S.F., 2020. "Simulation and validation model for using the energy produced from broiler litter waste in their house and its requirement of energy," Renewable Energy, Elsevier, vol. 159(C), pages 920-928.
    11. Fernandez, Helen Coarita & Buffiere, Pierre & Bayard, Rémy, 2022. "Understanding the role of mechanical pretreatment before anaerobic digestion: Lab-scale investigations," Renewable Energy, Elsevier, vol. 187(C), pages 193-203.
    12. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2013. "Status of renewable energy consumption and developmental challenges in Sub-Sahara Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 453-463.
    13. Dumitru Peni & Marcin Dębowski & Mariusz Jerzy Stolarski, 2022. "Influence of the Fertilization Method on the Silphium perfoliatum Biomass Composition and Methane Fermentation Efficiency," Energies, MDPI, vol. 15(3), pages 1-13, January.
    14. Krzysztof Gaska & Agnieszka Generowicz & Anna Gronba-Chyła & Józef Ciuła & Iwona Wiewiórska & Paweł Kwaśnicki & Marcin Mala & Krzysztof Chyła, 2023. "Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change," Energies, MDPI, vol. 16(15), pages 1-19, July.
    15. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    16. Park, Min-Ju & Kim, Hak-Min & Gu, Yun-Jeong & Jeong, Dae-Woon, 2023. "Optimization of biogas-reforming conditions considering carbon formation, hydrogen production, and energy efficiencies," Energy, Elsevier, vol. 265(C).
    17. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    18. Bedoić, Robert & Dorotić, Hrvoje & Schneider, Daniel Rolph & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2021. "Synergy between feedstock gate fee and power-to-gas: An energy and economic analysis of renewable methane production in a biogas plant," Renewable Energy, Elsevier, vol. 173(C), pages 12-23.
    19. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    20. Koua, Blaise K. & Koffi, Paul Magloire E. & Gbaha, Prosper & Touré, Siaka, 2015. "Present status and overview of potential of renewable energy in Cote d’Ivoire," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 907-914.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5782-:d:1209852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.