IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v183y2016icp1123-1132.html
   My bibliography  Save this article

Synergistic pretreatment of waste activated sludge using CaO2 in combination with microwave irradiation to enhance methane production during anaerobic digestion

Author

Listed:
  • Wang, Jie
  • Li, Yongmei

Abstract

To investigate the effects of combined calcium peroxide (CaO2) and microwave pretreatment on anaerobic digestion of waste activated sludge, lab-scale experiments were conducted to measure the solubilization, biodegradation, and dewaterability of the waste activated sludge. Additionally, the synergistic effects between CaO2 and microwave were studied, and the microbial activity and methanogenic archaea community structure were analyzed. Combined pretreatment considerably facilitated the solubilization and subsequent anaerobic digestion of the waste activated sludge. The optimal pretreatment condition was CaO2 (0.1g/gVSS)/microwave (480W, 2min) for methane production during the subsequent anaerobic digestion process. Under this condition, 80.2% higher CH4 accumulation yield was achieved after 16d of anaerobic digestion when compared with the control. The synergistic effects of CaO2/microwave pretreatment resulted from the different mechanisms of CaO2 and microwave treatments. Further, microwave irradiation increased OH generation from CaO2 and significantly alleviated the inhibitory effect of CaO2 on methanogens. The activities of hydrolytic enzymes and acid-forming enzymes in the waste activated sludge were improved after CaO2 (0.1g/gVSS)/microwave (480W, 2min) pretreatment. Methanogenesis enzyme activity was also higher after CaO2 treatment (0.1g/gVSS)/microwave (480W, 2min) following a lag period. Illumina MiSeq sequencing analysis indicated that acetate-utilizing methanogen (Methanosaeta sp.) and H2/CO2-utilizing methanogen (Methanospirillum sp.) abundance improved greatly following CaO2 (0.1g/gVSS)/microwave (480W, 2min) pretreatment. The percentage of CH4 in biogas with CaO2/microwave pretreatment increased by 25.4% relative to the control. The dewaterability of the waste activated sludge also improved considerably after anaerobic digestion with combined CaO2/microwave treatment. Therefore, CaO2/microwave pretreatment can be used as an effective method to recover energy from waste activated sludge.

Suggested Citation

  • Wang, Jie & Li, Yongmei, 2016. "Synergistic pretreatment of waste activated sludge using CaO2 in combination with microwave irradiation to enhance methane production during anaerobic digestion," Applied Energy, Elsevier, vol. 183(C), pages 1123-1132.
  • Handle: RePEc:eee:appene:v:183:y:2016:i:c:p:1123-1132
    DOI: 10.1016/j.apenergy.2016.09.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916313447
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.09.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tyagi, Vinay Kumar & Lo, Shang-Lien, 2013. "Microwave irradiation: A sustainable way for sludge treatment and resource recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 288-305.
    2. Cano, R. & Pérez-Elvira, S.I. & Fdz-Polanco, F., 2015. "Energy feasibility study of sludge pretreatments: A review," Applied Energy, Elsevier, vol. 149(C), pages 176-185.
    3. Ariunbaatar, Javkhlan & Panico, Antonio & Esposito, Giovanni & Pirozzi, Francesco & Lens, Piet N.L., 2014. "Pretreatment methods to enhance anaerobic digestion of organic solid waste," Applied Energy, Elsevier, vol. 123(C), pages 143-156.
    4. Koch, Konrad & Drewes, Jörg E., 2014. "Alternative approach to estimate the hydrolysis rate constant of particulate material from batch data," Applied Energy, Elsevier, vol. 120(C), pages 11-15.
    5. Ebenezer, A. Vimala & Arulazhagan, P. & Adish Kumar, S. & Yeom, Ick-Tae & Rajesh Banu, J., 2015. "Effect of deflocculation on the efficiency of low-energy microwave pretreatment and anaerobic biodegradation of waste activated sludge," Applied Energy, Elsevier, vol. 145(C), pages 104-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    2. Li, Yue & Chen, Yinguang & Wu, Jiang, 2019. "Enhancement of methane production in anaerobic digestion process: A review," Applied Energy, Elsevier, vol. 240(C), pages 120-137.
    3. Li, He & Shi, Shiliang & Lin, Baiquan & Lu, Jiexin & Ye, Qing & Lu, Yi & Wang, Zheng & Hong, Yidu & Zhu, Xiangnan, 2019. "Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals," Energy, Elsevier, vol. 187(C).
    4. Chowdhury, M.M.I. & Nakhla, G. & Zhu, J., 2017. "Ultrasonically enhanced anaerobic digestion of thickened waste activated sludge using fluidized bed reactors," Applied Energy, Elsevier, vol. 204(C), pages 807-818.
    5. Ruffino, Barbara & Cerutti, Alberto & Campo, Giuseppe & Scibilia, Gerardo & Lorenzi, Eugenio & Zanetti, Mariachiara, 2019. "Improvement of energy recovery from the digestion of waste activated sludge (WAS) through intermediate treatments: The effect of the hydraulic retention time (HRT) of the first-stage digestion," Applied Energy, Elsevier, vol. 240(C), pages 191-204.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen, Guangyin & Lu, Xueqin & Kato, Hiroyuki & Zhao, Youcai & Li, Yu-You, 2017. "Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 559-577.
    2. Yin, Yao & Liu, Ya-Juan & Meng, Shu-Juan & Kiran, Esra Uçkun & Liu, Yu, 2016. "Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion," Applied Energy, Elsevier, vol. 179(C), pages 1131-1137.
    3. Li, Yue & Chen, Yinguang & Wu, Jiang, 2019. "Enhancement of methane production in anaerobic digestion process: A review," Applied Energy, Elsevier, vol. 240(C), pages 120-137.
    4. Kor-Bicakci, Gokce & Eskicioglu, Cigdem, 2019. "Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 423-443.
    5. Georgia-Christina Mitraka & Konstantinos N. Kontogiannopoulos & Maria Batsioula & George F. Banias & Anastasios I. Zouboulis & Panagiotis G. Kougias, 2022. "A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge," Energies, MDPI, vol. 15(18), pages 1-56, September.
    6. Ghasimi, Dara S.M. & de Kreuk, Merle & Maeng, Sung Kyu & Zandvoort, Marcel H. & van Lier, Jules B., 2016. "High-rate thermophilic bio-methanation of the fine sieved fraction from Dutch municipal raw sewage: Cost-effective potentials for on-site energy recovery," Applied Energy, Elsevier, vol. 165(C), pages 569-582.
    7. Akgul, Deniz & Cella, Monica Angela & Eskicioglu, Cigdem, 2017. "Influences of low-energy input microwave and ultrasonic pretreatments on single-stage and temperature-phased anaerobic digestion (TPAD) of municipal wastewater sludge," Energy, Elsevier, vol. 123(C), pages 271-282.
    8. Fernández-Polanco, D. & Tatsumi, H., 2016. "Optimum energy integration of thermal hydrolysis through pinch analysis," Renewable Energy, Elsevier, vol. 96(PB), pages 1093-1102.
    9. Derick Lima & Gregory Appleby & Li Li, 2023. "A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants," Energies, MDPI, vol. 16(5), pages 1-34, March.
    10. Kor-Bicakci, Gokce & Ubay-Cokgor, Emine & Eskicioglu, Cigdem, 2019. "Effect of dewatered sludge microwave pretreatment temperature and duration on net energy generation and biosolids quality from anaerobic digestion," Energy, Elsevier, vol. 168(C), pages 782-795.
    11. Li, Wei & Guo, Jianbin & Cheng, Huicai & Wang, Wei & Dong, Renjie, 2017. "Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: Viability, performance and microbial community evaluation," Applied Energy, Elsevier, vol. 189(C), pages 613-622.
    12. Fasil Ayelegn Tassew & Wenche Hennie Bergland & Carlos Dinamarca & Roald Kommedal & Rune Bakke, 2019. "Granular Sludge Bed Processes in Anaerobic Digestion of Particle-Rich Substrates," Energies, MDPI, vol. 12(15), pages 1-20, July.
    13. Cano, R. & Pérez-Elvira, S.I. & Fdz-Polanco, F., 2015. "Energy feasibility study of sludge pretreatments: A review," Applied Energy, Elsevier, vol. 149(C), pages 176-185.
    14. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin, 2016. "Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste," Applied Energy, Elsevier, vol. 172(C), pages 47-58.
    15. Koch, Konrad & Helmreich, Brigitte & Drewes, Jörg E., 2015. "Co-digestion of food waste in municipal wastewater treatment plants: Effect of different mixtures on methane yield and hydrolysis rate constant," Applied Energy, Elsevier, vol. 137(C), pages 250-255.
    16. Ebenezer, A. Vimala & Arulazhagan, P. & Adish Kumar, S. & Yeom, Ick-Tae & Rajesh Banu, J., 2015. "Effect of deflocculation on the efficiency of low-energy microwave pretreatment and anaerobic biodegradation of waste activated sludge," Applied Energy, Elsevier, vol. 145(C), pages 104-110.
    17. Chen, Yinguang & Liu, Hui & Zheng, Xiong & Wang, Xin & Wu, Jiang, 2017. "New method for enhancement of bioenergy production from municipal organic wastes via regulation of anaerobic fermentation process," Applied Energy, Elsevier, vol. 196(C), pages 190-198.
    18. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2017. "Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential," Applied Energy, Elsevier, vol. 207(C), pages 166-175.
    19. Sarto, Sarto & Hildayati, Raudati & Syaichurrozi, Iqbal, 2019. "Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics," Renewable Energy, Elsevier, vol. 132(C), pages 335-350.
    20. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:183:y:2016:i:c:p:1123-1132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.