IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v110y2019icp423-443.html
   My bibliography  Save this article

Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion

Author

Listed:
  • Kor-Bicakci, Gokce
  • Eskicioglu, Cigdem

Abstract

Sludge management is still one of the most challenging issues in wastewater treatment plants due to a dramatic increase in sludge production, high sludge disposal costs, legal constraints as well as social and environmental concerns. There is a great effort to develop more environmentally friendly and economical technologies for minimization of excess sludge production and converting wastewater treatment sludge from waste into a renewable resource for bioenergy recovery. Recently, among these technologies, pretreatment processes applied before anaerobic sludge digestion have received a growing attention with several advantages over conventional digestion process. The main goal of the present paper is to present a state-of-the-art review of recent developments on advanced anaerobic digestion employed in municipal wastewater treatment plants. Thermal pretreatment technologies documented in the literature are presented extensively. The effectiveness of thermal pretreatment methods, namely conventional, microwave and radio frequency heatings, are discussed and compared in terms of heating principles, sludge disintegration, digester performance, and sludge rheology. The effectiveness and practicality of the aforementioned methods at industrial-scale and some challenges associated with the implementation at full-scale are also reviewed. Particular attention is paid to integration of combined heat and power systems with thermal hydrolysis for achieving energy self-sufficiency in full-scale plants. Furthermore, the municipal sludge production around the world as well as current sludge disposal and reuse options are addressed.

Suggested Citation

  • Kor-Bicakci, Gokce & Eskicioglu, Cigdem, 2019. "Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 423-443.
  • Handle: RePEc:eee:rensus:v:110:y:2019:i:c:p:423-443
    DOI: 10.1016/j.rser.2019.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119303089
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tyagi, Vinay Kumar & Lo, Shang-Lien, 2013. "Microwave irradiation: A sustainable way for sludge treatment and resource recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 288-305.
    2. Ariunbaatar, Javkhlan & Panico, Antonio & Esposito, Giovanni & Pirozzi, Francesco & Lens, Piet N.L., 2014. "Pretreatment methods to enhance anaerobic digestion of organic solid waste," Applied Energy, Elsevier, vol. 123(C), pages 143-156.
    3. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.
    4. Shen, Yanwen & Linville, Jessica L. & Urgun-Demirtas, Meltem & Mintz, Marianne M. & Snyder, Seth W., 2015. "An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 346-362.
    5. Fytili, D. & Zabaniotou, A., 2008. "Utilization of sewage sludge in EU application of old and new methods--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 116-140, January.
    6. Zhen, Guangyin & Lu, Xueqin & Kato, Hiroyuki & Zhao, Youcai & Li, Yu-You, 2017. "Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 559-577.
    7. Kor-Bicakci, Gokce & Ubay-Cokgor, Emine & Eskicioglu, Cigdem, 2019. "Effect of dewatered sludge microwave pretreatment temperature and duration on net energy generation and biosolids quality from anaerobic digestion," Energy, Elsevier, vol. 168(C), pages 782-795.
    8. Cano, R. & Pérez-Elvira, S.I. & Fdz-Polanco, F., 2015. "Energy feasibility study of sludge pretreatments: A review," Applied Energy, Elsevier, vol. 149(C), pages 176-185.
    9. Manara, P. & Zabaniotou, A., 2012. "Towards sewage sludge based biofuels via thermochemical conversion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2566-2582.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salah Jellali & Yassine Charabi & Muhammad Usman & Abdullah Al-Badi & Mejdi Jeguirim, 2021. "Investigations on Biogas Recovery from Anaerobic Digestion of Raw Sludge and Its Mixture with Agri-Food Wastes: Application to the Largest Industrial Estate in Oman," Sustainability, MDPI, vol. 13(7), pages 1-20, March.
    2. Hubert Byliński & Andrzej Sobecki & Jacek Gębicki, 2019. "The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process," Sustainability, MDPI, vol. 11(16), pages 1-12, August.
    3. Georgia-Christina Mitraka & Konstantinos N. Kontogiannopoulos & Maria Batsioula & George F. Banias & Anastasios I. Zouboulis & Panagiotis G. Kougias, 2022. "A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge," Energies, MDPI, vol. 15(18), pages 1-56, September.
    4. Wang, Zhongzhong & Hu, Yuansheng & Wang, Shun & Wu, Guangxue & Zhan, Xinmin, 2023. "A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    5. Stergios Vakalis & Snehesh Shivananda Ail & Konstantinos Moustakas & Marco J. Castaldi, 2023. "Operation and Thermodynamic Modeling of a Novel Advanced Hydrothermal Reactor: Introduction of the Novel 3-Step Evolution Model," Energies, MDPI, vol. 16(4), pages 1-14, February.
    6. Patil, Ravichandra & Cimon, Caroline & Eskicioglu, Cigdem & Goud, Vaibhav, 2021. "Effect of ozonolysis and thermal pre-treatment on rice straw hydrolysis for the enhancement of biomethane production," Renewable Energy, Elsevier, vol. 179(C), pages 467-474.
    7. Jellali, Salah & Khiari, Besma & Usman, Muhammad & Hamdi, Helmi & Charabi, Yassine & Jeguirim, Mejdi, 2021. "Sludge-derived biochars: A review on the influence of synthesis conditions on pollutants removal efficiency from wastewaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Hosseini Koupaie, E. & Lin, L. & Bazyar Lakeh, A.A. & Azizi, A. & Dhar, B.R. & Hafez, H. & Elbeshbishy, E., 2021. "Performance evaluation and microbial community analysis of mesophilic and thermophilic sludge fermentation processes coupled with thermal hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Sylwia Myszograj & Ewelina Płuciennik-Koropczuk, 2023. "Thermal Disintegration of Sewage Sludge as a Method of Improving the Biogas Potential," Energies, MDPI, vol. 16(1), pages 1-14, January.
    10. Tavera-Ruiz, C. & Martí-Herrero, J. & Mendieta, O. & Jaimes-Estévez, J. & Gauthier-Maradei, P. & Azimov, U. & Escalante, H. & Castro, L., 2023. "Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    11. Manuel García & Paula Oulego & Mario Díaz & Sergio Collado, 2021. "Non-Energetic Chemical Products by Fermentation of Hydrolyzed Sewage Sludge," Sustainability, MDPI, vol. 13(10), pages 1-37, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elalami, D. & Carrere, H. & Monlau, F. & Abdelouahdi, K. & Oukarroum, A. & Barakat, A., 2019. "Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Zhen, Guangyin & Lu, Xueqin & Kato, Hiroyuki & Zhao, Youcai & Li, Yu-You, 2017. "Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 559-577.
    3. Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Derick Lima & Gregory Appleby & Li Li, 2023. "A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants," Energies, MDPI, vol. 16(5), pages 1-34, March.
    5. Yin, Changkai & Shen, Yanwen & Zhu, Nanwen & Huang, Qiujie & Lou, Ziyang & Yuan, Haiping, 2018. "Anaerobic digestion of waste activated sludge with incineration bottom ash: Enhanced methane production and CO2 sequestration," Applied Energy, Elsevier, vol. 215(C), pages 503-511.
    6. Lin, Kuo-Hsiung & Lai, Nina & Zeng, Jun-Yan & Chiang, Hung-Lung, 2020. "Microwave-pyrolysis treatment of biosludge from a chemical industrial wastewater treatment plant for exploring product characteristics and potential energy recovery," Energy, Elsevier, vol. 199(C).
    7. Adam Masłoń & Joanna Czarnota & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2020. "The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland," Energies, MDPI, vol. 13(22), pages 1-21, November.
    8. Wang, Jie & Li, Yongmei, 2016. "Synergistic pretreatment of waste activated sludge using CaO2 in combination with microwave irradiation to enhance methane production during anaerobic digestion," Applied Energy, Elsevier, vol. 183(C), pages 1123-1132.
    9. Chen, Hong & Yi, Hao & Li, Hechao & Guo, Xuesong & Xiao, Benyi, 2020. "Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: Performance, energy balance and, enhancement mechanism," Renewable Energy, Elsevier, vol. 147(P1), pages 2409-2416.
    10. Çelebi, Emrehan Berkay & Aksoy, Ayşegül & Sanin, F. Dilek, 2021. "Maximizing the energy potential of urban sludge treatment: An experimental study and a scenario-based energy analysis focusing on anaerobic digestion with ultrasound pretreatment and sludge combustion," Energy, Elsevier, vol. 221(C).
    11. Huang, Yu-Fong & Shih, Chun-Hao & Chiueh, Pei-Te & Lo, Shang-Lien, 2015. "Microwave co-pyrolysis of sewage sludge and rice straw," Energy, Elsevier, vol. 87(C), pages 638-644.
    12. Ali, Syed Muhammad Hassan & Lenzen, Manfred & Sack, Fabian & Yousefzadeh, Moslem, 2020. "Electricity generation and demand flexibility in wastewater treatment plants: Benefits for 100% renewable electricity grids," Applied Energy, Elsevier, vol. 268(C).
    13. Magdziarz, Aneta & Wilk, Małgorzata & Gajek, Marcin & Nowak-Woźny, Dorota & Kopia, Agnieszka & Kalemba-Rec, Izabela & Koziński, Janusz A., 2016. "Properties of ash generated during sewage sludge combustion: A multifaceted analysis," Energy, Elsevier, vol. 113(C), pages 85-94.
    14. Chen, Yi-di & Li, Suping & Ho, Shih-Hsin & Wang, Chengyu & Lin, Yen-Chang & Nagarajan, Dillirani & Chang, Jo-Shu & Ren, Nan-qi, 2018. "Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 76-90.
    15. Praspaliauskas, M. & Pedišius, N., 2017. "A review of sludge characteristics in Lithuania's wastewater treatment plants and perspectives of its usage in thermal processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 899-907.
    16. Beegle, Jeffrey R. & Borole, Abhijeet P., 2018. "Energy production from waste: Evaluation of anaerobic digestion and bioelectrochemical systems based on energy efficiency and economic factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 343-351.
    17. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    18. Yin, Yao & Liu, Ya-Juan & Meng, Shu-Juan & Kiran, Esra Uçkun & Liu, Yu, 2016. "Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion," Applied Energy, Elsevier, vol. 179(C), pages 1131-1137.
    19. Georgia-Christina Mitraka & Konstantinos N. Kontogiannopoulos & Maria Batsioula & George F. Banias & Anastasios I. Zouboulis & Panagiotis G. Kougias, 2022. "A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge," Energies, MDPI, vol. 15(18), pages 1-56, September.
    20. Wu, Junnan & Liao, Yanfen & Lin, Yan & Tian, Yunlong & Ma, Xiaoqian, 2019. "Study on thermal decomposition kinetics model of sewage sludge and wheat based on multi distributed activation energy," Energy, Elsevier, vol. 185(C), pages 795-803.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:110:y:2019:i:c:p:423-443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.