IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v113y2016icp85-94.html
   My bibliography  Save this article

Properties of ash generated during sewage sludge combustion: A multifaceted analysis

Author

Listed:
  • Magdziarz, Aneta
  • Wilk, Małgorzata
  • Gajek, Marcin
  • Nowak-Woźny, Dorota
  • Kopia, Agnieszka
  • Kalemba-Rec, Izabela
  • Koziński, Janusz A.

Abstract

This paper presents chemical properties of sewage sludge ashes required for determining their thermal characteristics. A novel approach, linking selected advanced analytical techniques with FactSage modelling, was developed and applied to obtain new information on deposit formation mechanisms that contribute to fouling and slagging. The mineral matter and fusion temperatures were investigated using a variety of analytical techniques including XRF, ICP-MS, XRD, SEM-EDX and AFT. The slagging and fouling indices were calculated and the sintering properties were predicted. The studied ashes were rich in P2O5, CaO, SiO2 and Fe2O3, but their concentrations slightly differed. Phase analyses suggested the existence of calcium and phosphorus as main phases. Thermal behaviour of ashes was studied focusing on the mass loss, temperature peaks and thermic effects with the increasing of temperature up to 1200 °C under air atmosphere. The changes in concentration of ash compounds contributed to differences in ash fusion temperatures. FactSage thermochemical equilibrium calculations were used to predict the amount of liquid slag and solid phases, giving information about slagging properties of ashes. The general conclusion based on experimental studies is that sewage sludge ashes cause the slagging and fouling hazard while they reveal low corrosive effect.

Suggested Citation

  • Magdziarz, Aneta & Wilk, Małgorzata & Gajek, Marcin & Nowak-Woźny, Dorota & Kopia, Agnieszka & Kalemba-Rec, Izabela & Koziński, Janusz A., 2016. "Properties of ash generated during sewage sludge combustion: A multifaceted analysis," Energy, Elsevier, vol. 113(C), pages 85-94.
  • Handle: RePEc:eee:energy:v:113:y:2016:i:c:p:85-94
    DOI: 10.1016/j.energy.2016.07.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216309537
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.07.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    2. Wilk, Małgorzata & Magdziarz, Aneta & Kalemba, Izabela, 2015. "Characterisation of renewable fuels' torrefaction process with different instrumental techniques," Energy, Elsevier, vol. 87(C), pages 259-269.
    3. Manara, P. & Zabaniotou, A., 2012. "Towards sewage sludge based biofuels via thermochemical conversion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2566-2582.
    4. Fytili, D. & Zabaniotou, A., 2008. "Utilization of sewage sludge in EU application of old and new methods--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 116-140, January.
    5. Chun, Young Nam & Kim, Seong Cheon & Yoshikawa, Kunio, 2011. "Pyrolysis gasification of dried sewage sludge in a combined screw and rotary kiln gasifier," Applied Energy, Elsevier, vol. 88(4), pages 1105-1112, April.
    6. Luan, Chao & You, Changfu & Zhang, Dongke, 2014. "Composition and sintering characteristics of ashes from co-firing of coal and biomass in a laboratory-scale drop tube furnace," Energy, Elsevier, vol. 69(C), pages 562-570.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilk, Małgorzata & Śliz, Maciej & Lubieniecki, Bogusław, 2021. "Hydrothermal co-carbonization of sewage sludge and fuel additives: Combustion performance of hydrochar," Renewable Energy, Elsevier, vol. 178(C), pages 1046-1056.
    2. Karol Król & Dorota Nowak-Woźny, 2021. "Application of the Mechanical and Pressure Drop Tests to Determine the Sintering Temperature of Coal and Biomass Ash," Energies, MDPI, vol. 14(4), pages 1-14, February.
    3. Huang, Qian & Xu, Jiuping, 2020. "Bi-level multi-objective programming approach for carbon emission quota allocation towards co-combustion of coal and sewage sludge," Energy, Elsevier, vol. 211(C).
    4. Karol Król & Wojciech Moroń & Dorota Nowak-Woźny, 2022. "Biomass and Coal Ash Sintering—Thermodynamic Equilibrium Modeling versus Pressure Drop Test and Mechanical Test," Energies, MDPI, vol. 16(1), pages 1-16, December.
    5. Zhang, Zhe & Liu, Congmin & Liu, Wei & Du, Xu & Cui, Yong & Gong, Jian & Guo, Hua & Deng, Yulin, 2017. "Direct conversion of sewage sludge to electricity using polyoxomatelate catalyzed flow fuel cell," Energy, Elsevier, vol. 141(C), pages 1019-1026.
    6. Karol Król & Dorota Nowak-Woźny & Wojciech Moroń, 2023. "Study of Ash Sintering Temperature and Ash Deposition Behavior during Co-Firing of Polish Bituminous Coal with Barley Straw Using Non-Standard Tests," Energies, MDPI, vol. 16(11), pages 1-15, May.
    7. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    8. Magdziarz, Aneta & Gajek, Marcin & Nowak-Woźny, Dorota & Wilk, Małgorzata, 2018. "Mineral phase transformation of biomass ashes – Experimental and thermochemical calculations," Renewable Energy, Elsevier, vol. 128(PB), pages 446-459.
    9. Ilham Gbouri & Fan Yu & Xutong Wang & Junxia Wang & Xiaoqiang Cui & Yanjun Hu & Beibei Yan & Guanyi Chen, 2022. "Co-Pyrolysis of Sewage Sludge and Wetland Biomass Waste for Biochar Production: Behaviors of Phosphorus and Heavy Metals," IJERPH, MDPI, vol. 19(5), pages 1-16, February.
    10. Skrzypczak, Dawid & Trzaska, Krzysztof & Mikula, Katarzyna & Gil, Filip & Izydorczyk, Grzegorz & Mironiuk, Małgorzata & Polomska, Xymena & Moustakas, Konstantinos & Witek-Krowiak, Anna & Chojnacka, Ka, 2023. "Conversion of anaerobic digestates from biogas plants: Laboratory fertilizer formulation, scale-up and demonstration of applicative properties on plants," Renewable Energy, Elsevier, vol. 203(C), pages 506-517.
    11. Magdalena Kachel & Artur Kraszkiewicz & Alaa Subr & Stanisław Parafiniuk & Artur Przywara & Milan Koszel & Grzegorz Zając, 2020. "Impact of the Type of Fertilization and the Addition of Glycerol on the Quality of Spring Rape Straw Pellets," Energies, MDPI, vol. 13(4), pages 1-11, February.
    12. Sever Akdağ, Ayşe & Atak, Onur & Atimtay, Aysel T. & Sanin, Faika Dilek, 2018. "Co-combustion of sewage sludge from different treatment processes and a lignite coal in a laboratory scale combustor," Energy, Elsevier, vol. 158(C), pages 417-426.
    13. Link, Siim & Yrjas, Patrik & Hupa, Leena, 2018. "Ash melting behaviour of wheat straw blends with wood and reed," Renewable Energy, Elsevier, vol. 124(C), pages 11-20.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    2. Praspaliauskas, M. & Pedišius, N., 2017. "A review of sludge characteristics in Lithuania's wastewater treatment plants and perspectives of its usage in thermal processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 899-907.
    3. Jha, Gaurav & Soren, S., 2017. "Study on applicability of biomass in iron ore sintering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 399-407.
    4. Wu, Junnan & Liao, Yanfen & Lin, Yan & Tian, Yunlong & Ma, Xiaoqian, 2019. "Study on thermal decomposition kinetics model of sewage sludge and wheat based on multi distributed activation energy," Energy, Elsevier, vol. 185(C), pages 795-803.
    5. Tsiligiannis, Aristeides & Tsiliyannis, Christos, 2020. "Oil refinery sludge and renewable fuel blends as energy sources for the cement industry," Renewable Energy, Elsevier, vol. 157(C), pages 55-70.
    6. Di Fraia, S. & Massarotti, N. & Vanoli, L. & Costa, M., 2016. "Thermo-economic analysis of a novel cogeneration system for sewage sludge treatment," Energy, Elsevier, vol. 115(P3), pages 1560-1571.
    7. Prajitno, Hermawan & Park, Jongkeun & Ryu, Changkook & Park, Ho Young & Lim, Hyun Soo & Kim, Jaehoon, 2018. "Effects of solvent participation and controlled product separation on biomass liquefaction: A case study of sewage sludge," Applied Energy, Elsevier, vol. 218(C), pages 402-416.
    8. Naqvi, Salman Raza & Tariq, Rumaisa & Hameed, Zeeshan & Ali, Imtiaz & Naqvi, Muhammad & Chen, Wei-Hsin & Ceylan, Selim & Rashid, Harith & Ahmad, Junaid & Taqvi, Syed A. & Shahbaz, Muhammad, 2019. "Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method," Renewable Energy, Elsevier, vol. 131(C), pages 854-860.
    9. Li, Sarengaowa & Chen, Heng & Yuan, Xin & Pan, Peiyuan & Xu, Gang & Wang, Xiuyan & Wu, Lining, 2024. "Energy, exergy and economic analysis of a poly-generation system combining sludge pyrolysis and medical waste plasma gasification," Energy, Elsevier, vol. 295(C).
    10. Lin, Kuo-Hsiung & Lai, Nina & Zeng, Jun-Yan & Chiang, Hung-Lung, 2020. "Microwave-pyrolysis treatment of biosludge from a chemical industrial wastewater treatment plant for exploring product characteristics and potential energy recovery," Energy, Elsevier, vol. 199(C).
    11. Patel, Savankumar & Kundu, Sazal & Halder, Pobitra & Rickards, Lauren & Paz-Ferreiro, Jorge & Surapaneni, Aravind & Madapusi, Srinivasan & Shah, Kalpit, 2019. "Thermogravimetric Analysis of biosolids pyrolysis in the presence of mineral oxides," Renewable Energy, Elsevier, vol. 141(C), pages 707-716.
    12. Kor-Bicakci, Gokce & Eskicioglu, Cigdem, 2019. "Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 423-443.
    13. Adar, Elanur & Karatop, Buket & İnce, Mahir & Bilgili, Mehmet Sinan, 2016. "Comparison of methods for sustainable energy management with sewage sludge in Turkey based on SWOT-FAHP analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 429-440.
    14. Magdziarz, Aneta & Gajek, Marcin & Nowak-Woźny, Dorota & Wilk, Małgorzata, 2018. "Mineral phase transformation of biomass ashes – Experimental and thermochemical calculations," Renewable Energy, Elsevier, vol. 128(PB), pages 446-459.
    15. Elalami, D. & Carrere, H. & Monlau, F. & Abdelouahdi, K. & Oukarroum, A. & Barakat, A., 2019. "Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Hong, Sungpyo & Ryu, Changkook & Ko, Han Seo & Ohm, Tae-In & Chae, Jong-Seong, 2013. "Process consideration of fry-drying combined with steam compression for efficient fuel production from sewage sludge," Applied Energy, Elsevier, vol. 103(C), pages 468-476.
    17. Do, Truong Xuan & Mujahid, Rana & Lim, Hyun Soo & Kim, Jae-Kon & Lim, Young-Il & Kim, Jaehoon, 2020. "Techno-economic analysis of bio heavy-oil production from sewage sludge using supercritical and subcritical water," Renewable Energy, Elsevier, vol. 151(C), pages 30-42.
    18. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    19. Gürel, Barış & Kurtuluş, Karani & Yurdakul, Sema & Karaca Dolgun, Gülşah & Akman, Remzi & Önür, Muhammet Enes & Varol, Murat & Keçebaş, Ali & Gürbüz, Habib, 2024. "Combustion of chicken manure and Turkish lignite mixtures in a circulating fluidized bed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    20. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:113:y:2016:i:c:p:85-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.