IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v62y2016icp429-440.html
   My bibliography  Save this article

Comparison of methods for sustainable energy management with sewage sludge in Turkey based on SWOT-FAHP analysis

Author

Listed:
  • Adar, Elanur
  • Karatop, Buket
  • İnce, Mahir
  • Bilgili, Mehmet Sinan

Abstract

The sewage sludge creates as a result of wastewater treatment and has high water content, contains pathogens, heavy metals, micro-pollutants, etc., and also include organics that have a high calorific value, nitrogen and phosphor; therefore, it is necessary to select sustainable methods in its treatment/disposal. As for sustainable sludge management, not only current technologies, but also several other criteria such as legal regulations and problem-solving need to be taken into account. This study summarized the current situation for the management of domestic sewage sludge in Turkey and compared the methods of anaerobic digestion, incineration, gasification, pyrolysis and supercritical water gasification (SCWG), which are used/can be used in Turkey, with one another on the basis of four different criteria. As a result of the SWOT-FAHP (fuzzy analytic hierarchy process) analysis performed, it was observed that supercritical water gasification, which is one of the five methods considered, and problem-solving criterion, which is one of the four criteria considered, had the highest weight values. According to the results obtained via comparison of criteria, it was determined that the availability of current technology had less importance than problem-solving criterion in the selection of an appropriate method. The reasons why the method of supercritical water gasification had a high weight value even though it had certain disadvantages can be listed as follows: it ensures treatment with a high yield, does not require pre-treatment, has a shorter reaction time and creates a higher amount of beneficial by-products as compared with harmful emissions. Furthermore, this study also touched upon the obstacles to overcome for the development of SCWG and brought recommendations.

Suggested Citation

  • Adar, Elanur & Karatop, Buket & İnce, Mahir & Bilgili, Mehmet Sinan, 2016. "Comparison of methods for sustainable energy management with sewage sludge in Turkey based on SWOT-FAHP analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 429-440.
  • Handle: RePEc:eee:rensus:v:62:y:2016:i:c:p:429-440
    DOI: 10.1016/j.rser.2016.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116301174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Yucheng & Pawłowski, Artur, 2012. "Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1657-1665.
    2. Chen, Wei-Ming & Kim, Hana & Yamaguchi, Hideka, 2014. "Renewable energy in eastern Asia: Renewable energy policy review and comparative SWOT analysis for promoting renewable energy in Japan, South Korea, and Taiwan," Energy Policy, Elsevier, vol. 74(C), pages 319-329.
    3. Werle, Sebastian & Wilk, Ryszard K., 2010. "A review of methods for the thermal utilization of sewage sludge: The Polish perspective," Renewable Energy, Elsevier, vol. 35(9), pages 1914-1919.
    4. Chun, Young Nam & Kim, Seong Cheon & Yoshikawa, Kunio, 2011. "Pyrolysis gasification of dried sewage sludge in a combined screw and rotary kiln gasifier," Applied Energy, Elsevier, vol. 88(4), pages 1105-1112, April.
    5. He, Chao & Chen, Chia-Lung & Giannis, Apostolos & Yang, Yanhui & Wang, Jing-Yuan, 2014. "Hydrothermal gasification of sewage sludge and model compounds for renewable hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1127-1142.
    6. Jaber, J.O. & Elkarmi, Fawwaz & Alasis, Emil & Kostas, Anagnostopoulos, 2015. "Employment of renewable energy in Jordan: Current status, SWOT and problem analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 490-499.
    7. Fytili, D. & Zabaniotou, A., 2008. "Utilization of sewage sludge in EU application of old and new methods--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 116-140, January.
    8. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ilić, Damir & Milošević, Isidora & Ilić-Kosanović, Tatjana, 2022. "Application of Unmanned Aircraft Systems for smart city transformation: Case study Belgrade," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    2. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    3. Sun, Hao & Bi, Haobo & Jiang, Chunlong & Ni, Zhanshi & Tian, Junjian & Zhou, Wenliang & Qiu, Zhicong & Lin, Qizhao, 2022. "Experimental study of the co-pyrolysis of sewage sludge and wet waste via TG-FTIR-GC and artificial neural network model: Synergistic effect, pyrolysis kinetics and gas products," Renewable Energy, Elsevier, vol. 184(C), pages 1-14.
    4. Jankowski, Krzysztof Józef & Dubis, Bogdan & Kozak, Marcin, 2021. "Sewage sludge and the energy balance of Jerusalem artichoke production - A case study in north-eastern Poland," Energy, Elsevier, vol. 236(C).
    5. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tahseen, Samiha & Karney, Bryan, 2017. "Opportunities for increased hydropower diversion at Niagara: An sSWOT analysis," Renewable Energy, Elsevier, vol. 101(C), pages 757-770.
    2. Kaytez, Fazıl, 2022. "Evaluation of priority strategies for the expansion of installed wind power capacity in Turkey using a fuzzy analytic network process analysis," Renewable Energy, Elsevier, vol. 196(C), pages 1281-1293.
    3. Ren, Jingzheng & Liang, Hanwei & Dong, Liang & Gao, Zhiqiu & He, Chang & Pan, Ming & Sun, Lu, 2017. "Sustainable development of sewage sludge-to-energy in China: Barriers identification and technologies prioritization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 384-396.
    4. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Wang, Liping & Chang, Yuzhi & Li, Aimin, 2019. "Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 423-440.
    6. Magdziarz, Aneta & Wilk, Małgorzata & Gajek, Marcin & Nowak-Woźny, Dorota & Kopia, Agnieszka & Kalemba-Rec, Izabela & Koziński, Janusz A., 2016. "Properties of ash generated during sewage sludge combustion: A multifaceted analysis," Energy, Elsevier, vol. 113(C), pages 85-94.
    7. Praspaliauskas, M. & Pedišius, N., 2017. "A review of sludge characteristics in Lithuania's wastewater treatment plants and perspectives of its usage in thermal processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 899-907.
    8. Salah Jellali & Yassine Charabi & Muhammad Usman & Abdullah Al-Badi & Mejdi Jeguirim, 2021. "Investigations on Biogas Recovery from Anaerobic Digestion of Raw Sludge and Its Mixture with Agri-Food Wastes: Application to the Largest Industrial Estate in Oman," Sustainability, MDPI, vol. 13(7), pages 1-20, March.
    9. Lin Zhang & Shan Guo & Zezhou Wu & Ahmed Alsaedi & Tasawar Hayat, 2018. "SWOT Analysis for the Promotion of Energy Efficiency in Rural Buildings: A Case Study of China," Energies, MDPI, vol. 11(4), pages 1-17, April.
    10. Wang, Ruikun & Lin, Zhaohua & Meng, Shu & Liu, Senyang & Zhao, Zhenghui & Wang, Chunbo & Yin, Qianqian, 2022. "Effect of lignocellulosic components on the hydrothermal carbonization reaction pathway and product properties of protein," Energy, Elsevier, vol. 259(C).
    11. Dinko Đurđević & Saša Žiković & Paolo Blecich, 2022. "Sustainable Sewage Sludge Management Technologies Selection Based on Techno-Economic-Environmental Criteria: Case Study of Croatia," Energies, MDPI, vol. 15(11), pages 1-23, May.
    12. Haque, H.M. Enamul & Dhakal, Shobhakar & Mostafa, S.M.G., 2020. "An assessment of opportunities and challenges for cross-border electricity trade for Bangladesh using SWOT-AHP approach," Energy Policy, Elsevier, vol. 137(C).
    13. Ren, Jingzheng & Liang, Hanwei & Chan, Felix T.S., 2017. "Urban sewage sludge, sustainability, and transition for Eco-City: Multi-criteria sustainability assessment of technologies based on best-worst method," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 29-39.
    14. Manara, P. & Zabaniotou, A., 2012. "Towards sewage sludge based biofuels via thermochemical conversion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2566-2582.
    15. Jorge Paz-Ferreiro & Aurora Nieto & Ana Méndez & Matthew Peter James Askeland & Gabriel Gascó, 2018. "Biochar from Biosolids Pyrolysis: A Review," IJERPH, MDPI, vol. 15(5), pages 1-16, May.
    16. Jumoke Oladejo & Kaiqi Shi & Xiang Luo & Gang Yang & Tao Wu, 2018. "A Review of Sludge-to-Energy Recovery Methods," Energies, MDPI, vol. 12(1), pages 1-38, December.
    17. Patel, Savankumar & Kundu, Sazal & Halder, Pobitra & Rickards, Lauren & Paz-Ferreiro, Jorge & Surapaneni, Aravind & Madapusi, Srinivasan & Shah, Kalpit, 2019. "Thermogravimetric Analysis of biosolids pyrolysis in the presence of mineral oxides," Renewable Energy, Elsevier, vol. 141(C), pages 707-716.
    18. Elena Goldan & Valentin Nedeff & Narcis Barsan & Mihaela Culea & Claudia Tomozei & Mirela Panainte-Lehadus & Emilian Mosnegutu, 2022. "Evaluation of the Use of Sewage Sludge Biochar as a Soil Amendment—A Review," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    19. Solomon E. Uhunamure & Karabo Shale, 2021. "A SWOT Analysis Approach for a Sustainable Transition to Renewable Energy in South Africa," Sustainability, MDPI, vol. 13(7), pages 1-18, April.
    20. Kamran, Muhammad & Fazal, Muhammad Rayyan & Mudassar, Muhammad, 2020. "Towards empowerment of the renewable energy sector in Pakistan for sustainable energy evolution: SWOT analysis," Renewable Energy, Elsevier, vol. 146(C), pages 543-558.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:62:y:2016:i:c:p:429-440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.