IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v259y2022ics0360544222019582.html
   My bibliography  Save this article

Effect of lignocellulosic components on the hydrothermal carbonization reaction pathway and product properties of protein

Author

Listed:
  • Wang, Ruikun
  • Lin, Zhaohua
  • Meng, Shu
  • Liu, Senyang
  • Zhao, Zhenghui
  • Wang, Chunbo
  • Yin, Qianqian

Abstract

Blending lignocellulosic biomass with sewage sludge can further improve the fuel performance of hydrochar. Investigating the effects of different lignocellulosic components on protein hydrothermal carbonization (HTC) reaction pathways and product properties can provide insights into ways to screen lignocellulosic biomass. In this study, cellulose, hemicellulose, and lignin were selected for co-HTC with protein in different mass ratios (1:2 and 2:1). Results showed that the dehydration and decarboxylation reactions were strong when protein–hemicellulose co-HTC in a mass ratio of 2:1, and the O/C and H/C atomic ratios of the hydrochar decreased to 0.14 and 1.19, respectively. As the blending ratio of lignocellulosic components increased, the interaction gradually reached saturation, and the synergistic effect on the properties of mixture hydrochar decreased. Moreover, the functional group characteristics of the mixture hydrochar tended to resemble the chemical structures of lignocellulosic components. The Maillard and Mannich reactions between lignocellulosic components and proteins during co-HTC resulted in the re-solidification of N-containing compounds in the liquid-phase products. The degradation products of protein and (hemi)cellulose (glucose and furfural) were polymerized into char by the Maillard reaction. However, water-soluble N-containing compounds were immobilized into char through adsorption or reaction with lignin O-containing functional groups.

Suggested Citation

  • Wang, Ruikun & Lin, Zhaohua & Meng, Shu & Liu, Senyang & Zhao, Zhenghui & Wang, Chunbo & Yin, Qianqian, 2022. "Effect of lignocellulosic components on the hydrothermal carbonization reaction pathway and product properties of protein," Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222019582
    DOI: 10.1016/j.energy.2022.125063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222019582
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Yucheng & Pawłowski, Artur, 2012. "Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1657-1665.
    2. Lu, Xiaoluan & Ma, Xiaoqian & Chen, Xinfei, 2021. "Co-hydrothermal carbonization of sewage sludge and lignocellulosic biomass: Fuel properties and heavy metal transformation behaviour of hydrochars," Energy, Elsevier, vol. 221(C).
    3. Wang, Liping & Chang, Yuzhi & Li, Aimin, 2019. "Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 423-440.
    4. Yang, Jie & He, Quan (Sophia) & Niu, Haibo & Corscadden, Kenneth & Astatkie, Tess, 2018. "Hydrothermal liquefaction of biomass model components for product yield prediction and reaction pathways exploration," Applied Energy, Elsevier, vol. 228(C), pages 1618-1628.
    5. Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
    6. Djandja, Oraléou Sangué & Salami, Adekunlé Akim & Wang, Zhi-Cong & Duo, Jia & Yin, Lin-Xin & Duan, Pei-Gao, 2022. "Random forest-based modeling for insights on phosphorus content in hydrochar produced from hydrothermal carbonization of sewage sludge," Energy, Elsevier, vol. 245(C).
    7. He, Chao & Chen, Chia-Lung & Giannis, Apostolos & Yang, Yanhui & Wang, Jing-Yuan, 2014. "Hydrothermal gasification of sewage sludge and model compounds for renewable hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1127-1142.
    8. Chen, Haitao & He, Zhixia & Zhang, Bo & Feng, Huan & Kandasamy, Sabariswaran & Wang, Bin, 2019. "Effects of the aqueous phase recycling on bio-oil yield in hydrothermal liquefaction of Spirulina Platensis, α-cellulose, and lignin," Energy, Elsevier, vol. 179(C), pages 1103-1113.
    9. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Zhai, Yunbo & Peng, Chuan & Xu, Bibo & Wang, Tengfei & Li, Caiting & Zeng, Guangming & Zhu, Yun, 2017. "Hydrothermal carbonisation of sewage sludge for char production with different waste biomass: Effects of reaction temperature and energy recycling," Energy, Elsevier, vol. 127(C), pages 167-174.
    11. Wang, Ruikun & Wang, Chunbo & Zhao, Zhenghui & Jia, Jiandong & Jin, Qingzhuang, 2019. "Energy recovery from high-ash municipal sewage sludge by hydrothermal carbonization: Fuel characteristics of biosolid products," Energy, Elsevier, vol. 186(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wądrzyk, Mariusz & Korzeniowski, Łukasz & Plata, Marek & Janus, Rafał & Lewandowski, Marek & Michalik, Marek & Magdziarz, Aneta, 2023. "Pyrolysis of hydrochars obtained from blackcurrant pomace in single and binary solvent systems," Renewable Energy, Elsevier, vol. 214(C), pages 383-394.
    2. Rhea Gallant & Aitazaz A. Farooque & Sophia He & Kang Kang & Yulin Hu, 2022. "A Mini-Review: Biowaste-Derived Fuel Pellet by Hydrothermal Carbonization Followed by Pelletizing," Sustainability, MDPI, vol. 14(19), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kossińska, Nina & Krzyżyńska, Renata & Ghazal, Heba & Jouhara, Hussam, 2023. "Hydrothermal carbonisation of sewage sludge and resulting biofuels as a sustainable energy source," Energy, Elsevier, vol. 275(C).
    2. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Wilk, Małgorzata & Śliz, Maciej & Lubieniecki, Bogusław, 2021. "Hydrothermal co-carbonization of sewage sludge and fuel additives: Combustion performance of hydrochar," Renewable Energy, Elsevier, vol. 178(C), pages 1046-1056.
    4. Liu, Tonggui & Jiao, HuiTing & Yang, Longsheng & Zhang, Weijin & Hu, Yingbing & Guo, Yonghao & Yang, Lihong & Leng, Songqi & Chen, Jiefeng & Chen, Jie & Peng, Haoyi & Leng, Lijian & Zhou, Wenguang, 2022. "Co-hydrothermal carbonization of cellulose, hemicellulose, and protein with aqueous phase recirculation: Insight into the reaction mechanisms on hydrochar formation," Energy, Elsevier, vol. 251(C).
    5. Wang, Ruikun & Liu, Senyang & Xue, Qiao & Lin, Kai & Yin, Qianqian & Zhao, Zhenghui, 2022. "Analysis and prediction of characteristics for solid product obtained by hydrothermal carbonization of biomass components," Renewable Energy, Elsevier, vol. 183(C), pages 575-585.
    6. Fabio Merzari & Jillian Goldfarb & Gianni Andreottola & Tanja Mimmo & Maurizio Volpe & Luca Fiori, 2020. "Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties," Energies, MDPI, vol. 13(11), pages 1-22, June.
    7. Djandja, Oraléou Sangué & Kang, Shimin & Huang, Zizhi & Li, Junqiao & Feng, Jiaqi & Tan, Zaiming & Salami, Adekunlé Akim & Lougou, Bachirou Guene, 2023. "Machine learning prediction of fuel properties of hydrochar from co-hydrothermal carbonization of sewage sludge and lignocellulosic biomass," Energy, Elsevier, vol. 271(C).
    8. Ioannis O. Vardiambasis & Theodoros N. Kapetanakis & Christos D. Nikolopoulos & Trinh Kieu Trang & Toshiki Tsubota & Ramazan Keyikoglu & Alireza Khataee & Dimitrios Kalderis, 2020. "Hydrochars as Emerging Biofuels: Recent Advances and Application of Artificial Neural Networks for the Prediction of Heating Values," Energies, MDPI, vol. 13(17), pages 1-20, September.
    9. Theodoros N. Kapetanakis & Ioannis O. Vardiambasis & Christos D. Nikolopoulos & Antonios I. Konstantaras & Trinh Kieu Trang & Duy Anh Khuong & Toshiki Tsubota & Ramazan Keyikoglu & Alireza Khataee & D, 2021. "Towards Engineered Hydrochars: Application of Artificial Neural Networks in the Hydrothermal Carbonization of Sewage Sludge," Energies, MDPI, vol. 14(11), pages 1-15, May.
    10. Antonio Picone & Maurizio Volpe & Antonio Messineo, 2021. "Process Water Recirculation during Hydrothermal Carbonization of Waste Biomass: Current Knowledge and Challenges," Energies, MDPI, vol. 14(10), pages 1-14, May.
    11. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability,, Springer.
    12. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    13. Lu, Xiaoluan & Ma, Xiaoqian & Chen, Xinfei, 2021. "Co-hydrothermal carbonization of sewage sludge and lignocellulosic biomass: Fuel properties and heavy metal transformation behaviour of hydrochars," Energy, Elsevier, vol. 221(C).
    14. Siti Zaharah Roslan & Siti Fairuz Zainudin & Alijah Mohd Aris & Khor Bee Chin & Mohibah Musa & Ahmad Rafizan Mohamad Daud & Syed Shatir A. Syed Hassan, 2023. "Hydrothermal Carbonization of Sewage Sludge into Solid Biofuel: Influences of Process Conditions on the Energetic Properties of Hydrochar," Energies, MDPI, vol. 16(5), pages 1-16, March.
    15. Lin, Yousheng & Ge, Ya & Xiao, Hanmin & He, Qing & Wang, Wenhao & Chen, Baiman, 2020. "Investigation of hydrothermal co-carbonization of waste textile with waste wood, waste paper and waste food from typical municipal solid wastes," Energy, Elsevier, vol. 210(C).
    16. Pagés-Díaz, Jhosané & Cerda Alvarado, Andrés Osvaldo & Montalvo, Silvio & Diaz-Robles, Luis & Curio, César Huiliñir, 2020. "Anaerobic bio-methane potential of the liquors from hydrothermal carbonization of different lignocellulose biomasses," Renewable Energy, Elsevier, vol. 157(C), pages 182-189.
    17. Xu, Zhi-Xiang & Song, Hao & Zhang, Shu & Tong, Si-Qi & He, Zhi-Xia & Wang, Qian & Li, Bin & Hu, Xun, 2019. "Co-hydrothermal carbonization of digested sewage sludge and cow dung biogas residue: Investigation of the reaction characteristics," Energy, Elsevier, vol. 187(C).
    18. Wei, Yingyuan & Fakudze, Sandile & Zhang, Yiming & Ma, Ru & Shang, Qianqian & Chen, Jianqiang & Liu, Chengguo & Chu, Qiulu, 2022. "Co-hydrothermal carbonization of pomelo peel and PVC for production of hydrochar pellets with enhanced fuel properties and dechlorination," Energy, Elsevier, vol. 239(PD).
    19. Małgorzata Wilk & Marcin Gajek & Maciej Śliz & Klaudia Czerwińska & Lidia Lombardi, 2022. "Hydrothermal Carbonization Process of Digestate from Sewage Sludge: Chemical and Physical Properties of Hydrochar in Terms of Energy Application," Energies, MDPI, vol. 15(18), pages 1-17, September.
    20. Yan, Mi & Liu, Yu & Song, Yucai & Xu, Aiming & Zhu, Gaojun & Jiang, Jiahao & Hantoko, Dwi, 2022. "Comprehensive experimental study on energy conversion of household kitchen waste via integrated hydrothermal carbonization and supercritical water gasification," Energy, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222019582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.