IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224008004.html
   My bibliography  Save this article

Structure evolution characteristic of hydrochar and nitrogen transformation mechanism during co-hydrothermal carbonization process of microalgae and biomass

Author

Listed:
  • Shen, Qian
  • Zhu, Xianqing
  • Peng, Yang
  • Xu, Mian
  • Huang, Yun
  • Xia, Ao
  • Zhu, Xun
  • Liao, Qiang

Abstract

Co-hydrothermal carbonization (co-HTC) of microalgae and lignocellulosic biomass has high potential for producing nitrogen-rich carbon materials (hydrochar) with relatively high yield. The synergistic effect, hydrochar structure evolution and nitrogen transformation mechanism during the co-HTC process were depicted in depth. The results of the co-HTC process showed that the positive synergy between biomass and microalgae could improve the hydrochar yield and facilitate incorporation of nitrogen into the hydrochar aromatic heterocycles structures. Moderate reaction conditions were beneficial for co-HTC hydrochar nitrogen enrichment and porosity increment, and the optimal nitrogen content and specific surface area reached 3.50% and 5.91 m2/g in co-HTC hydrochars at 240 °C and 1 h. Severe reaction conditions could enhance the formation of stable heterocyclic nitrogen species (reaching 54% at 300 °C). The hydrochar structure evolution and nitrogen transformation mechanism during co-HTC process could be generally divided into two stages. The first stage took place from 180 to 260 °C, and the nitrogen-rich secondary chars could be formed by the interaction of the hydrolysis intermediates. The second stage occurred from 260 to 300 °C, and the previously formed secondary char would be gradually decomposed. This study provides theoretical guidance for regulating the co-HTC process to produce nitrogen-rich carbon materials.

Suggested Citation

  • Shen, Qian & Zhu, Xianqing & Peng, Yang & Xu, Mian & Huang, Yun & Xia, Ao & Zhu, Xun & Liao, Qiang, 2024. "Structure evolution characteristic of hydrochar and nitrogen transformation mechanism during co-hydrothermal carbonization process of microalgae and biomass," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008004
    DOI: 10.1016/j.energy.2024.131028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224008004
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.