Achieving carbon credits through biomass torrefaction and hydrothermal carbonization: A review
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2024.115056
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Shijie Yu & Xinyue Dong & Peng Zhao & Zhicheng Luo & Zhuohua Sun & Xiaoxiao Yang & Qinghai Li & Lei Wang & Yanguo Zhang & Hui Zhou, 2022. "Decoupled temperature and pressure hydrothermal synthesis of carbon sub-micron spheres from cellulose," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Antonios Nazos & Dorothea Politi & Georgios Giakoumakis & Dimitrios Sidiras, 2022. "Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review," Energies, MDPI, vol. 15(23), pages 1-35, November.
- Lund, Henrik & Skov, Iva Ridjan & Thellufsen, Jakob Zinck & Sorknæs, Peter & Korberg, Andrei David & Chang, Miguel & Mathiesen, Brian Vad & Kany, Mikkel Strunge, 2022. "The role of sustainable bioenergy in a fully decarbonised society," Renewable Energy, Elsevier, vol. 196(C), pages 195-203.
- Ngoc-Dan Cao, Thanh & Mukhtar, Hussnain & Yu, Chang-Ping & Bui, Xuan-Thanh & Pan, Shu-Yuan, 2022. "Agricultural waste-derived biochar in microbial fuel cells towards a carbon-negative circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
- Singh, Satyansh & Chakraborty, Jyoti Prasad & Mondal, Monoj Kumar, 2019. "Optimization of process parameters for torrefaction of Acacia nilotica using response surface methodology and characteristics of torrefied biomass as upgraded fuel," Energy, Elsevier, vol. 186(C).
- Aiwen Zhao & Xiaoqian Song & Jiajie Li & Qingchun Yuan & Yingshun Pei & Ruilin Li & Michael Hitch, 2023. "Effects of Carbon Tax on Urban Carbon Emission Reduction: Evidence in China Environmental Governance," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
- Liu, Xiangmin & Fan, Yuwei & Zhai, Yunbo & Liu, Xiaoping & Wang, Zhexian & Zhu, Ya & Shi, Haoran & Li, Caiting & Zhu, Yun, 2022. "Co-hydrothermal carbonization of rape straw and microalgae: pH-enhanced carbonization process to obtain clean hydrochar," Energy, Elsevier, vol. 257(C).
- Zhang, Congyu & Ho, Shih-Hsin & Chen, Wei-Hsin & Fu, Yujie & Chang, Jo-Shu & Bi, Xiaotao, 2019. "Oxidative torrefaction of biomass nutshells: Evaluations of energy efficiency as well as biochar transportation and storage," Applied Energy, Elsevier, vol. 235(C), pages 428-441.
- Yan, Beibei & Li, Songjiang & Cao, Xingsijin & Zhu, Xiaochao & Li, Jian & Zhou, Shengquan & Zhao, Juan & Sun, Yunan & Chen, Guanyi, 2023. "Flue gas torrefaction integrated with gasification based on the circulation of Mg-additive," Applied Energy, Elsevier, vol. 333(C).
- Gao, Ningbo & Śliz, Maciej & Quan, Cui & Bieniek, Artur & Magdziarz, Aneta, 2021. "Biomass CO2 gasification with CaO looping for syngas production in a fixed-bed reactor," Renewable Energy, Elsevier, vol. 167(C), pages 652-661.
- Wang, Peng & Guo, Yafei & Zhao, Chuanwen & Yan, Junjie & Lu, Ping, 2017. "Biomass derived wood ash with amine modification for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 201(C), pages 34-44.
- Zhai, Yunbo & Peng, Chuan & Xu, Bibo & Wang, Tengfei & Li, Caiting & Zeng, Guangming & Zhu, Yun, 2017. "Hydrothermal carbonisation of sewage sludge for char production with different waste biomass: Effects of reaction temperature and energy recycling," Energy, Elsevier, vol. 127(C), pages 167-174.
- Zhang, Lihui & Li, Songrui & Hu, Yitang & Nie, Qingyun, 2022. "Economic optimization of a bioenergy-based hybrid renewable energy system under carbon policies—from the life-cycle perspective," Applied Energy, Elsevier, vol. 310(C).
- Michael Tost & Benjamin Bayer & Michael Hitch & Stephan Lutter & Peter Moser & Susanne Feiel, 2018. "Metal Mining’s Environmental Pressures: A Review and Updated Estimates on CO 2 Emissions, Water Use, and Land Requirements," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
- Lee, Kuan-Ting & Cheng, Ching-Lin & Lee, Da-Sheng & Chen, Wei-Hsin & Vo, Dai-Viet N. & Ding, Lu & Lam, Su Shiung, 2022. "Spent coffee grounds biochar from torrefaction as a potential adsorbent for spilled diesel oil recovery and as an alternative fuel," Energy, Elsevier, vol. 239(PE).
- Bach, Quang-Vu & Skreiberg, Øyvind, 2016. "Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 665-677.
- Galinato, Suzette P. & Yoder, Jonathan K. & Granatstein, David, 2011.
"The economic value of biochar in crop production and carbon sequestration,"
Energy Policy, Elsevier, vol. 39(10), pages 6344-6350, October.
- Suzette P. Galinato & Jonathan K. Yoder & David Granatstein, 2010. "The Economic Value of Biochar in Crop Production and Carbon Sequestration," Working Papers 2010-3, School of Economic Sciences, Washington State University.
- Chen, Wei-Hsin & Lin, Bo-Jhih & Colin, Baptiste & Chang, Jo-Shu & Pétrissans, Anélie & Bi, Xiaotao & Pétrissans, Mathieu, 2018. "Hygroscopic transformation of woody biomass torrefaction for carbon storage," Applied Energy, Elsevier, vol. 231(C), pages 768-776.
- Michela Lucian & Maurizio Volpe & Luca Fiori, 2019. "Hydrothermal Carbonization Kinetics of Lignocellulosic Agro-Wastes: Experimental Data and Modeling," Energies, MDPI, vol. 12(3), pages 1-20, February.
- Shahbeik, Hossein & Peng, Wanxi & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, Hannes & Pandalon, 2022. "Synthesis of liquid biofuels from biomass by hydrothermal gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Kambo, Harpreet Singh & Dutta, Animesh, 2014. "Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization," Applied Energy, Elsevier, vol. 135(C), pages 182-191.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Wei-Hsin & Biswas, Partha Pratim & Chang, Jo-Shu & Ryšavý, Jiří & Čespiva, Jakub, 2025. "A review of comparative life cycle assessment of dry, wet, and microwave torrefaction pathways for sustainable bioenergy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 219(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kartal, Furkan & Özveren, Uğur, 2022. "Prediction of torrefied biomass properties from raw biomass," Renewable Energy, Elsevier, vol. 182(C), pages 578-591.
- Zhang, Congyu & Zhan, Yong & Chen, Wei-Hsin & Ho, Shih-Hsin & Park, Young-Kwon & Culaba, Alvin B. & Zhang, Ying, 2024. "Correlations between different fuel property indicators and carbonization degree of oxidatively torrefied microalgal biomass," Energy, Elsevier, vol. 286(C).
- Zhang, Congyu & Chen, Wei-Hsin & Ho, Shih-Hsin & Park, Young-Kwon & Wang, Chengyu & Zhang, Ying, 2023. "Pelletization property analysis of raw and torrefied corn stalks for industrial application to achieve agricultural waste conversion," Energy, Elsevier, vol. 285(C).
- Fabio Merzari & Jillian Goldfarb & Gianni Andreottola & Tanja Mimmo & Maurizio Volpe & Luca Fiori, 2020. "Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties," Energies, MDPI, vol. 13(11), pages 1-22, June.
- Liu, Liming & Wang, Hongxia & Zou, Wei & Zhao, Luna & Zhai, Yunbo & He, Hongkui, 2024. "Ionic liquid-catalyzed hydrothermal carbonization of sewage sludge: Effect of residence time and liquid phase circulation on hydrochar characteristic," Renewable Energy, Elsevier, vol. 231(C).
- Zhang, Congyu & Yang, Wu & Chen, Wei-Hsin & Ho, Shih-Hsin & Pétrissans, Anelie & Pétrissans, Mathieu, 2022. "Effect of torrefaction on the structure and reactivity of rice straw as well as life cycle assessment of torrefaction process," Energy, Elsevier, vol. 240(C).
- Anna Partridge & Ekaterina Sermyagina & Esa Vakkilainen, 2020. "Impact of Pretreatment on Hydrothermally Carbonized Spruce," Energies, MDPI, vol. 13(11), pages 1-13, June.
- Akbari, Maryam & Oyedun, Adetoyese Olajire & Kumar, Amit, 2020. "Techno-economic assessment of wet and dry torrefaction of biomass feedstock," Energy, Elsevier, vol. 207(C).
- Chen, Wei-Hsin & Biswas, Partha Pratim & Chang, Jo-Shu & Ryšavý, Jiří & Čespiva, Jakub, 2025. "A review of comparative life cycle assessment of dry, wet, and microwave torrefaction pathways for sustainable bioenergy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 219(C).
- Kostyniuk, Andrii & Likozar, Blaž, 2024. "Wet torrefaction of biomass waste into value-added liquid product (5-HMF) and high quality solid fuel (hydrochar) in a nitrogen atmosphere," Renewable Energy, Elsevier, vol. 226(C).
- Shen, Qian & Zhu, Xianqing & Peng, Yang & Xu, Mian & Huang, Yun & Xia, Ao & Zhu, Xun & Liao, Qiang, 2024. "Structure evolution characteristic of hydrochar and nitrogen transformation mechanism during co-hydrothermal carbonization process of microalgae and biomass," Energy, Elsevier, vol. 295(C).
- Gangil, Sandip & Bhargav, Vinod Kumar, 2018. "Influence of torrefaction on intrinsic bioconstituents of cotton stalk: TG-insights," Energy, Elsevier, vol. 142(C), pages 1066-1073.
- Marcin Bajcar & Miłosz Zardzewiały & Bogdan Saletnik & Grzegorz Zaguła & Czesław Puchalski & Józef Gorzelany, 2023. "Torrefaction as a Way to Remove Chlorine and Improve the Energy Properties of Plant Biomass," Energies, MDPI, vol. 16(21), pages 1-10, October.
- Wang, Tengfei & Zhai, Yunbo & Zhu, Yun & Li, Caiting & Zeng, Guangming, 2018. "A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 223-247.
- da Silva, Jean Constantino Gomes & Pereira, Jefferson Leque Claudio & Andersen, Silvia Layara Floriani & Moreira, Regina de Fatima Peralta Muniz & José, Humberto Jorge, 2020. "Torrefaction of ponkan peel waste in tubular fixed-bed reactor: In-depth bioenergetic evaluation of torrefaction products," Energy, Elsevier, vol. 210(C).
- Zhang, Congyu & Chen, Wei-Hsin & Ho, Shih-Hsin, 2022. "Elemental loss, enrichment, transformation and life cycle assessment of torrefied corncob," Energy, Elsevier, vol. 242(C).
- Singh, Satyansh & Chakraborty, Jyoti Prasad & Mondal, Monoj Kumar, 2020. "Torrefaction of woody biomass (Acacia nilotica): Investigation of fuel and flow properties to study its suitability as a good quality solid fuel," Renewable Energy, Elsevier, vol. 153(C), pages 711-724.
- Liu, Tianyu & Wen, Chang & Li, Changkang & Yan, Kai & Li, Rui & Jing, Zhenqi & Zhang, Bohan & Ma, Jingjing, 2022. "Integrated water washing and carbonization pretreatment of typical herbaceous and woody biomass: Fuel properties, combustion behaviors, and techno-economic assessments," Renewable Energy, Elsevier, vol. 200(C), pages 218-233.
- Wilk, Małgorzata & Śliz, Maciej & Lubieniecki, Bogusław, 2021. "Hydrothermal co-carbonization of sewage sludge and fuel additives: Combustion performance of hydrochar," Renewable Energy, Elsevier, vol. 178(C), pages 1046-1056.
- Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
More about this item
Keywords
; ; ; ; ;JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124007822. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.