IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v310y2022ics0306261922000770.html
   My bibliography  Save this article

Economic optimization of a bioenergy-based hybrid renewable energy system under carbon policies—from the life-cycle perspective

Author

Listed:
  • Zhang, Lihui
  • Li, Songrui
  • Hu, Yitang
  • Nie, Qingyun

Abstract

Rural areas are rich in renewable energy sources, such as wind, solar, and biomass. Bioenergy is a “zero-carbon energy”; therefore, bioenergy-based hybrid renewable energy systems (HRESs) are expected to be an important path for rural energy transformation. However, economic conditions make it difficult to mobilize investors in rural areas. Based on carbon emissions measured via life cycle assessment, an economic optimization mechanism was developed for HRESs under three carbon policies. The impacts of these three policies, carbon tax, carbon cap-and-trade, and carbon offset, on the economic and emission reduction benefits of HRESs were explored. The results showed that the introduction of biomass intermediate pyrolysis poly-generation could significantly reduce HRES emissions. Particularly, “carbon fixation” in biochar accounts for >60% of negative carbon emissions. By participating in the carbon mechanism, the economic benefits of the HRES in this study increased by $6776 compared with that of the integrated energy system in the urban area. This would effectively improve the dynamism of bioenergy-based HRESs. Considering the demands of different stages, the carbon policy implementation path “carbon offset – carbon cap-and-trade – carbon tax – carbon cap-and-trade” for HRESs was proposed. Based on a sensitivity analysis, the reference point of government carbon pricing can be obtained. The optimization mechanism may provide a reference for policymakers and investors, as well as help form a replicable and scalable HRES model in rural areas in the future.

Suggested Citation

  • Zhang, Lihui & Li, Songrui & Hu, Yitang & Nie, Qingyun, 2022. "Economic optimization of a bioenergy-based hybrid renewable energy system under carbon policies—from the life-cycle perspective," Applied Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:appene:v:310:y:2022:i:c:s0306261922000770
    DOI: 10.1016/j.apenergy.2022.118599
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922000770
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118599?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabriel Constantino de Lima & Andre Luiz Lopes Toledo & Leonidas Bourikas, 2021. "The Role of National Energy Policies and Life Cycle Emissions of PV Systems in Reducing Global Net Emissions of Greenhouse Gases," Energies, MDPI, vol. 14(4), pages 1-19, February.
    2. Zi, Cao & Qian, Meng & Baozhong, Gao, 2021. "The consumption patterns and determining factors of rural household energy: A case study of Henan Province in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Lewis, Claire D. & Smith, Kevin F. & Jacobs, Joe L. & Ho, Christie K.M. & Leddin, Clare M. & Malcolm, Bill, 2020. "Using a two-price market value method to value extra pasture DM in different seasons," Agricultural Systems, Elsevier, vol. 178(C).
    4. Khan, Faizan A. & Pal, Nitai & Saeed, Syed H., 2021. "Optimization and sizing of SPV/Wind hybrid renewable energy system: A techno-economic and social perspective," Energy, Elsevier, vol. 233(C).
    5. Li, Ruixiong & Zhang, Haoran & Wang, Huanran & Tu, Qingshi & Wang, Xuejun, 2019. "Integrated hybrid life cycle assessment and contribution analysis for CO2 emission and energy consumption of a concentrated solar power plant in China," Energy, Elsevier, vol. 174(C), pages 310-322.
    6. Ngan, Sue Lin & How, Bing Shen & Teng, Sin Yong & Leong, Wei Dong & Loy, Adrian Chun Minh & Yatim, Puan & Promentilla, Michael Angelo B. & Lam, Hon Loong, 2020. "A hybrid approach to prioritize risk mitigation strategies for biomass polygeneration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    7. Yang, Shenbo & Tan, Zhongfu & Lin, Hongyu & Li, Peng & De, Gejirifu & Zhou, Feng’ao & Ju, Liwei, 2020. "A two-stage optimization model for Park Integrated Energy System operation and benefit allocation considering the effect of Time-Of-Use energy price," Energy, Elsevier, vol. 195(C).
    8. Malladi, Krishna Teja & Sowlati, Taraneh, 2020. "Bi-objective optimization of biomass supply chains considering carbon pricing policies," Applied Energy, Elsevier, vol. 264(C).
    9. Schakel, Wouter & Meerman, Hans & Talaei, Alireza & Ramírez, Andrea & Faaij, André, 2014. "Comparative life cycle assessment of biomass co-firing plants with carbon capture and storage," Applied Energy, Elsevier, vol. 131(C), pages 441-467.
    10. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    11. Coady, Joe & Duquette, Jean, 2021. "Quantifying the impacts of biomass driven combined heat and power grids in northern rural and remote communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Wu, X.D. & Guo, J.L. & Chen, G.Q., 2018. "The striking amount of carbon emissions by the construction stage of coal-fired power generation system in China," Energy Policy, Elsevier, vol. 117(C), pages 358-369.
    13. Qing Yang & Hewen Zhou & Pietro Bartocci & Francesco Fantozzi & Ondřej Mašek & Foster A. Agblevor & Zhiyu Wei & Haiping Yang & Hanping Chen & Xi Lu & Guoqian Chen & Chuguang Zheng & Chris P. Nielsen &, 2021. "Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    14. Zeel Maheshwari & Rama Ramakumar, 2017. "Smart Integrated Renewable Energy Systems (SIRES): A Novel Approach for Sustainable Development," Energies, MDPI, vol. 10(8), pages 1-22, August.
    15. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Malladi, Krishna Teja & Sowlati, Taraneh, 2020. "Impact of carbon pricing policies on the cost and emission of the biomass supply chain: Optimization models and a case study," Applied Energy, Elsevier, vol. 267(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shilpa Sambhi & Himanshu Sharma & Vikas Bhadoria & Pankaj Kumar & Ravi Chaurasia & Giraja Shankar Chaurasia & Georgios Fotis & Vasiliki Vita & Lambros Ekonomou & Christos Pavlatos, 2022. "Economic Feasibility of a Renewable Integrated Hybrid Power Generation System for a Rural Village of Ladakh," Energies, MDPI, vol. 15(23), pages 1-25, December.
    2. Jiyong Li & Zeyi Hua & Lin Tian & Peiwen Chen & Hao Dong, 2024. "Optimal Capacity Allocation for Life Cycle Multiobjective Integrated Energy Systems Considering Capacity Tariffs and Eco-Indicator 99," Sustainability, MDPI, vol. 16(20), pages 1-22, October.
    3. Amiri-Pebdani, Sima & Alinaghian, Mahdi & Khosroshahi, Hossein, 2023. "Pricing in competitive energy supply chains considering government interventions to support CCS under cap-and-trade regulations: A game-theoretic approach," Energy Policy, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Lihui & Li, Songrui & Nie, Qingyun & Hu, Yitang, 2022. "A two-stage benefit optimization and multi-participant benefit-sharing strategy for hybrid renewable energy systems in rural areas under carbon trading," Renewable Energy, Elsevier, vol. 189(C), pages 744-761.
    2. Wang, Ying & Yan, Yuxin & Lin, Qingyang & Liu, Hanxiao & Luo, Xiang & Zheng, Chenghang & Wu, Tao & Gao, Xiang, 2024. "Multi-scope decarbonization and environmental impacts evaluation for biomass fuels co-firing CHP units in China," Applied Energy, Elsevier, vol. 372(C).
    3. William Ampomah & Anthony Morgan & Desmond Ofori Koranteng & Warden Ivan Nyamekye, 2024. "CCUS Perspectives: Assessing Historical Contexts, Current Realities, and Future Prospects," Energies, MDPI, vol. 17(17), pages 1-57, August.
    4. Salas, D.A. & Boero, A.J. & Ramirez, A.D., 2024. "Life cycle assessment of bioenergy with carbon capture and storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Saharudin, Djasmine Mastisya & Jeswani, Harish Kumar & Azapagic, Adisa, 2023. "Bioenergy with carbon capture and storage (BECSS): Life cycle environmental and economic assessment of electricity generated from palm oil wastes," Applied Energy, Elsevier, vol. 349(C).
    6. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    7. Wu, Zitao & Zhai, Haibo, 2021. "Consumptive life cycle water use of biomass-to-power plants with carbon capture and sequestration," Applied Energy, Elsevier, vol. 303(C).
    8. Aviso, K.B. & Sy, C.L. & Tan, R.R. & Ubando, A.T., 2020. "Fuzzy optimization of carbon management networks based on direct and indirect biomass co-firing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    9. Mohamed, Usama & Zhao, Ying-jie & Yi, Qun & Shi, Li-juan & Wei, Guo-qing & Nimmo, William, 2021. "Evaluation of life cycle energy, economy and CO2 emissions for biomass chemical looping gasification to power generation," Renewable Energy, Elsevier, vol. 176(C), pages 366-387.
    10. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    11. Yang, Lin & Lv, Haodong & Jiang, Dalin & Fan, Jingli & Zhang, Xian & He, Weijun & Zhou, Jinsheng & Wu, Wenjing, 2020. "Whether CCS technologies will exacerbate the water crisis in China? —A full life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Huang, Yawen & Tao, Bo & Lal, Rattan & Lorenz, Klaus & Jacinthe, Pierre-Andre & Shrestha, Raj K. & Bai, Xiongxiong & Singh, Maninder P. & Lindsey, Laura E. & Ren, Wei, 2023. "A global synthesis of biochar's sustainability in climate-smart agriculture - Evidence from field and laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    13. Amiri-Pebdani, Sima & Alinaghian, Mahdi & Khosroshahi, Hossein, 2023. "Pricing in competitive energy supply chains considering government interventions to support CCS under cap-and-trade regulations: A game-theoretic approach," Energy Policy, Elsevier, vol. 179(C).
    14. Muhammad Bilal Ali & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2023. "Decarbonizing Telecommunication Sector: Techno-Economic Assessment and Optimization of PV Integration in Base Transceiver Stations in Telecom Sector Spreading across Various Geographically Regions," Energies, MDPI, vol. 16(9), pages 1-34, April.
    15. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    16. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    17. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Yin, Kexin & Wei, Ranran & Ruan, Jiuxu & Cui, Peizhe & Zhu, Zhaoyou & Wang, Yinglong & Zhao, Xinling, 2023. "Life cycle assessment and life cycle cost analysis of surgical mask from production to recycling into hydrogen process," Energy, Elsevier, vol. 283(C).
    19. Nasrin Aghamohammadi & Stacy Simai Reginald & Ahmad Shamiri & Ali Akbar Zinatizadeh & Li Ping Wong & Nik Meriam Binti Nik Sulaiman, 2016. "An Investigation of Sustainable Power Generation from Oil Palm Biomass: A Case Study in Sarawak," Sustainability, MDPI, vol. 8(5), pages 1-19, April.
    20. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:310:y:2022:i:c:s0306261922000770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.