IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p516-d203944.html
   My bibliography  Save this article

Hydrothermal Carbonization Kinetics of Lignocellulosic Agro-Wastes: Experimental Data and Modeling

Author

Listed:
  • Michela Lucian

    (Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy)

  • Maurizio Volpe

    (Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy)

  • Luca Fiori

    (Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy)

Abstract

Olive trimmings (OT) were used as feedstock for an in-depth experimental study on the reaction kinetics controlling hydrothermal carbonization (HTC). OT were hydrothermally carbonized for a residence time τ of up to 8 h at temperatures between 180 and 250 °C to systematically investigate the chemical and energy properties changes of hydrochars during HTC. Additional experiments at 120 and 150 °C at τ = 0 h were carried out to analyze the heat-up transient phase required to reach the HTC set-point temperature. Furthermore, an original HTC reaction kinetics model was developed. The HTC reaction pathway was described through a lumped model, in which biomass is converted into solid (distinguished between primary and secondary char), liquid, and gaseous products. The kinetics model, written in MATLAB TM , was used in best fitting routines with HTC experimental data obtained using OT and two other agro-wastes previously tested: grape marc and Opuntia Ficus Indica . The HTC kinetics model effectively predicts carbon distribution among HTC products versus time with the thermal transient phase included; it represents an effective tool for R&D in the HTC field. Importantly, both modeling and experimental data suggest that already during the heat-up phase, biomass greatly carbonizes, in particular at the highest temperature tested of 250 °C.

Suggested Citation

  • Michela Lucian & Maurizio Volpe & Luca Fiori, 2019. "Hydrothermal Carbonization Kinetics of Lignocellulosic Agro-Wastes: Experimental Data and Modeling," Energies, MDPI, vol. 12(3), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:516-:d:203944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/516/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/516/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maurizio Volpe & Carmelo D'Anna & Simona Messineo & Roberto Volpe & Antonio Messineo, 2014. "Sustainable Production of Bio-Combustibles from Pyrolysis of Agro-Industrial Wastes," Sustainability, MDPI, vol. 6(11), pages 1-17, November.
    2. Michela Lucian & Luca Fiori, 2017. "Hydrothermal Carbonization of Waste Biomass: Process Design, Modeling, Energy Efficiency and Cost Analysis," Energies, MDPI, vol. 10(2), pages 1-18, February.
    3. Codignole Luz, Fàbio & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2018. "Biomass fast pyrolysis in a shaftless screw reactor: A 1-D numerical model," Energy, Elsevier, vol. 157(C), pages 792-805.
    4. Álvarez-Murillo, A. & Sabio, E. & Ledesma, B. & Román, S. & González-García, C.M., 2016. "Generation of biofuel from hydrothermal carbonization of cellulose. Kinetics modelling," Energy, Elsevier, vol. 94(C), pages 600-608.
    5. Pablo J. Arauzo & Maciej P. Olszewski & Andrea Kruse, 2018. "Hydrothermal Carbonization Brewer’s Spent Grains with the Focus on Improving the Degradation of the Feedstock," Energies, MDPI, vol. 11(11), pages 1-15, November.
    6. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    7. Silvia Román & Judy Libra & Nicole Berge & Eduardo Sabio & Kyoung Ro & Liang Li & Beatriz Ledesma & Andrés Álvarez & Sunyoung Bae, 2018. "Hydrothermal Carbonization: Modeling, Final Properties Design and Applications: A Review," Energies, MDPI, vol. 11(1), pages 1-28, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eunhye Song & Seyong Park & Seongkuk Han & Eusil Lee & Ho Kim, 2022. "Characteristics of Hydrothermal Carbonization Hydrochar Derived from Cattle Manure," Energies, MDPI, vol. 15(23), pages 1-14, December.
    2. Sangare, Diakaridia & Bostyn, Stéphane & Moscosa-Santillan, Mario & Gökalp, Iskender, 2021. "Hydrodynamics, heat transfer and kinetics reaction of CFD modeling of a batch stirred reactor under hydrothermal carbonization conditions," Energy, Elsevier, vol. 219(C).
    3. Eunhye Song & Ho Kim & Kyung Woo Kim & Young-Man Yoon, 2023. "Characteristic Evaluation of Different Carbonization Processes for Hydrochar, Torrefied Char, and Biochar Produced from Cattle Manure," Energies, MDPI, vol. 16(7), pages 1-14, April.
    4. Pecchi, Matteo & Patuzzi, Francesco & Benedetti, Vittoria & Di Maggio, Rosa & Baratieri, Marco, 2020. "Kinetic analysis of hydrothermal carbonization using high-pressure differential scanning calorimetry applied to biomass," Applied Energy, Elsevier, vol. 265(C).
    5. Manfredi Picciotto Maniscalco & Maurizio Volpe & Antonio Messineo, 2020. "Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review," Energies, MDPI, vol. 13(16), pages 1-26, August.
    6. Anna Partridge & Ekaterina Sermyagina & Esa Vakkilainen, 2020. "Impact of Pretreatment on Hydrothermally Carbonized Spruce," Energies, MDPI, vol. 13(11), pages 1-13, June.
    7. Antonio Picone & Maurizio Volpe & Antonio Messineo, 2021. "Process Water Recirculation during Hydrothermal Carbonization of Waste Biomass: Current Knowledge and Challenges," Energies, MDPI, vol. 14(10), pages 1-14, May.
    8. Fabio Merzari & Jillian Goldfarb & Gianni Andreottola & Tanja Mimmo & Maurizio Volpe & Luca Fiori, 2020. "Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties," Energies, MDPI, vol. 13(11), pages 1-22, June.
    9. Cheng, Chen & Ding, Lu & Guo, Qinghua & He, Qing & Gong, Yan & Alexander, Kozlov N. & Yu, Guangsuo, 2022. "Process analysis and kinetic modeling of coconut shell hydrothermal carbonization," Applied Energy, Elsevier, vol. 315(C).
    10. Mitchell Ubene & Mohammad Heidari & Animesh Dutta, 2022. "Computational Modeling Approaches of Hydrothermal Carbonization: A Critical Review," Energies, MDPI, vol. 15(6), pages 1-28, March.
    11. Roberta Ferrentino & Fabio Merzari & Luca Fiori & Gianni Andreottola, 2020. "Coupling Hydrothermal Carbonization with Anaerobic Digestion for Sewage Sludge Treatment: Influence of HTC Liquor and Hydrochar on Biomethane Production," Energies, MDPI, vol. 13(23), pages 1-19, November.
    12. Jung Eun Park & Gi Bbum Lee & Cheol Jin Jeong & Ho Kim & Choong Gon Kim, 2021. "Determination of Relationship between Higher Heating Value and Atomic Ratio of Hydrogen to Carbon in Spent Coffee Grounds by Hydrothermal Carbonization," Energies, MDPI, vol. 14(20), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiago Teribele & Maria Elizabeth Gemaque Costa & Conceição de Maria Sales da Silva & Lia Martins Pereira & Lucas Pinto Bernar & Douglas Alberto Rocha de Castro & Fernanda Paula da Costa Assunção & Mar, 2023. "Hydrothermal Carbonization of Corn Stover: Structural Evolution of Hydro-Char and Degradation Kinetics," Energies, MDPI, vol. 16(7), pages 1-22, April.
    2. Heidari, Mohammad & Salaudeen, Shakirudeen & Arku, Precious & Acharya, Bishnu & Tasnim, Syeda & Dutta, Animesh, 2021. "Development of a mathematical model for hydrothermal carbonization of biomass: Comparison of experimental measurements with model predictions," Energy, Elsevier, vol. 214(C).
    3. Mitchell Ubene & Mohammad Heidari & Animesh Dutta, 2022. "Computational Modeling Approaches of Hydrothermal Carbonization: A Critical Review," Energies, MDPI, vol. 15(6), pages 1-28, March.
    4. Barbara Mendecka & Giovanni Di Ilio & Lidia Lombardi, 2020. "Thermo-Fluid Dynamic and Kinetic Modeling of Hydrothermal Carbonization of Olive Pomace in a Batch Reactor," Energies, MDPI, vol. 13(16), pages 1-16, August.
    5. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    6. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    7. Pietro Romano & Nicola Stampone & Gabriele Di Giacomo, 2023. "Evolution and Prospects of Hydrothermal Carbonization," Energies, MDPI, vol. 16(7), pages 1-11, March.
    8. Dhananjay Bhatt & Ankita Shrestha & Raj Kumar Dahal & Bishnu Acharya & Prabir Basu & Richard MacEwen, 2018. "Hydrothermal Carbonization of Biosolids from Waste Water Treatment Plant," Energies, MDPI, vol. 11(9), pages 1-10, August.
    9. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    10. Neel Patel & Bishnu Acharya & Prabir Basu, 2021. "Hydrothermal Carbonization (HTC) of Seaweed (Macroalgae) for Producing Hydrochar," Energies, MDPI, vol. 14(7), pages 1-16, March.
    11. Surup, Gerrit Ralf & Leahy, James J. & Timko, Michael T. & Trubetskaya, Anna, 2020. "Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents," Renewable Energy, Elsevier, vol. 155(C), pages 347-357.
    12. Cheng, Chen & Ding, Lu & Guo, Qinghua & He, Qing & Gong, Yan & Alexander, Kozlov N. & Yu, Guangsuo, 2022. "Process analysis and kinetic modeling of coconut shell hydrothermal carbonization," Applied Energy, Elsevier, vol. 315(C).
    13. Shen, Yafei & Yu, Shili & Ge, Shun & Chen, Xingming & Ge, Xinlei & Chen, Mindong, 2017. "Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale," Energy, Elsevier, vol. 118(C), pages 312-323.
    14. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    15. Conceição de Maria Sales da Silva & Douglas Alberto Rocha de Castro & Marcelo Costa Santos & Hélio da Silva Almeida & Maja Schultze & Ulf Lüder & Thomas Hoffmann & Nélio Teixeira Machado, 2021. "Process Analysis of Main Organic Compounds Dissolved in Aqueous Phase by Hydrothermal Processing of Açaí ( Euterpe oleraceae , Mart.) Seeds: Influence of Process Temperature, Biomass-to-Water Ratio, a," Energies, MDPI, vol. 14(18), pages 1-24, September.
    16. Isaac Lorero & Arturo J. Vizcaíno & Francisco J. Alguacil & Félix A. López, 2020. "Activated Carbon from Winemaking Waste: Thermoeconomic Analysis for Large-Scale Production," Energies, MDPI, vol. 13(23), pages 1-22, December.
    17. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio & Braglia, Roberto & Canini, Antonella, 2018. "Ampelodesmos mauritanicus pyrolysis biochar in anaerobic digestion process: Evaluation of the biogas yield," Energy, Elsevier, vol. 161(C), pages 663-669.
    18. Abdullah, Rose Fadzilah & Rashid, Umer & Ibrahim, Mohd Lokman & Hazmi, Balkis & Alharthi, Fahad A. & Nehdi, Imededdine Arbi, 2021. "Bifunctional nano-catalyst produced from palm kernel shell via hydrothermal-assisted carbonization for biodiesel production from waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. De la Rubia, M.A. & Villamil, J.A. & Rodriguez, J.J. & Mohedano, A.F., 2018. "Effect of inoculum source and initial concentration on the anaerobic digestion of the liquid fraction from hydrothermal carbonisation of sewage sludge," Renewable Energy, Elsevier, vol. 127(C), pages 697-704.
    20. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz & Christian Aragon-Briceño & Mateusz Wnukowski & Artur Pożarlik & Lukasz Niedzwiecki & Marcin Baranowski & Michał Czerep & Przemysław Seruga & Hali, 2021. "Cascade Membrane System for Separation of Water and Organics from Liquid By-Products of HTC of the Agricultural Digestate—Evaluation of Performance," Energies, MDPI, vol. 14(16), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:516-:d:203944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.