IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124006128.html
   My bibliography  Save this article

Improvements in dewaterability and fuel properties of hydrochars derived from hydrothermal co-carbonization of sewage sludge and organic waste

Author

Listed:
  • Wilk, Małgorzata
  • Śliz, Maciej
  • Czerwińska, Klaudia
  • Gajek, Marcin
  • Kalemba-Rec, Izabela

Abstract

The hydrothermal co-carbonization of sewage sludge and organic additives, namely 10 and 20 % of charcoal, fir, grass, and an undersieved fraction of municipal solid waste, was studied. The benefits of this combined process included the spectacular dewaterability performance of slurry, proved by positive filtration tests and shorter capillary suction times. For instance, a 20 % fir addition decreased c.a. 60 % of pressure filtration time when compared to the hydrothermal carbonization of sewage sludge. A 10 % undersieved fraction of municipal solid waste resulted in 15.72 s of capillary suction time. Moreover, hydrothermal co-carbonization produced effective solid energy sources. The addition of organic origin waste to sewage sludge prior to the process caused higher heating values, carbon and fixed carbon contents of hydrochars (e.g. a 20 % charcoal addition generated 21 % higher heating value, 30 % carbon and 2.8 times higher fixed carbon), which corresponded with easier and more stable combustion processes compared to hydrochar from sewage sludge determined by thermal analysis. Possible exploitation problems during combustion have been assessed by determining the tendency risks of slagging and fouling based on oxides identified in ash by XRF analysis. Furthermore, changes in the structural and morphological properties of hydrochars were identified by SEM and FTIR analyses.

Suggested Citation

  • Wilk, Małgorzata & Śliz, Maciej & Czerwińska, Klaudia & Gajek, Marcin & Kalemba-Rec, Izabela, 2024. "Improvements in dewaterability and fuel properties of hydrochars derived from hydrothermal co-carbonization of sewage sludge and organic waste," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006128
    DOI: 10.1016/j.renene.2024.120547
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124006128
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.