IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v196y2022icp1281-1293.html
   My bibliography  Save this article

Evaluation of priority strategies for the expansion of installed wind power capacity in Turkey using a fuzzy analytic network process analysis

Author

Listed:
  • Kaytez, Fazıl

Abstract

Given its widespread potential and technological advancements, it is critical to use the greatest amount of wind power in reaching the 100% renewable energy target in power grids. SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis is frequently used to evaluate alternative strategies in multi-criteria decision issues. This paper employs a hybrid Fuzzy Analytic Network Process (FANP) approach based on SWOT to assess the future development of wind power capacities in Turkey in light of the sectoral effects of the Covid-19 outbreak in 2020. To validate the proposed approach, the results are compared to the results of the SWOT-based Analytic Network Process (ANP), Analytic Hierarchy Process (AHP), and fuzzy AHP (FAHP). According to the findings, “Development of domestic and efficient technologies (ST1)" and “Sustaining support mechanisms in investments and technological research (SO2)" are the best alternative strategies in all analysis models. While the priority ranks of other alternative strategies are the same in AHP and FAHP hierarchical techniques, FANP differs from ANP when the linguistic assessment process is taken into account. This study proposes long-term strategies for increasing wind power capacity and sector sustainability, and it demonstrates that FANP could be an appropriate approach for prioritizing these strategies in current scenarios.

Suggested Citation

  • Kaytez, Fazıl, 2022. "Evaluation of priority strategies for the expansion of installed wind power capacity in Turkey using a fuzzy analytic network process analysis," Renewable Energy, Elsevier, vol. 196(C), pages 1281-1293.
  • Handle: RePEc:eee:renene:v:196:y:2022:i:c:p:1281-1293
    DOI: 10.1016/j.renene.2022.07.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122010382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Ming & Kim, Hana & Yamaguchi, Hideka, 2014. "Renewable energy in eastern Asia: Renewable energy policy review and comparative SWOT analysis for promoting renewable energy in Japan, South Korea, and Taiwan," Energy Policy, Elsevier, vol. 74(C), pages 319-329.
    2. Catron, Jonathan & Stainback, G. Andrew & Dwivedi, Puneet & Lhotka, John M., 2013. "Bioenergy development in Kentucky: A SWOT-ANP analysis," Forest Policy and Economics, Elsevier, vol. 28(C), pages 38-43.
    3. Kenisarin, Murat & KarslI, Vedat M. & Çaglar, Mehmet, 2006. "Wind power engineering in the world and perspectives of its development in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 341-369, August.
    4. Kamran, Muhammad & Fazal, Muhammad Rayyan & Mudassar, Muhammad, 2020. "Towards empowerment of the renewable energy sector in Pakistan for sustainable energy evolution: SWOT analysis," Renewable Energy, Elsevier, vol. 146(C), pages 543-558.
    5. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    6. Wu, Yunna & Wang, Jing & Ji, Shaoyu & Song, Zixin, 2020. "Renewable energy investment risk assessment for nations along China’s Belt & Road Initiative: An ANP-cloud model method," Energy, Elsevier, vol. 190(C).
    7. Kone, Aylin Cigdem & Buke, Tayfun, 2007. "An Analytical Network Process (ANP) evaluation of alternative fuels for electricity generation in Turkey," Energy Policy, Elsevier, vol. 35(10), pages 5220-5228, October.
    8. Jaber, J.O. & Elkarmi, Fawwaz & Alasis, Emil & Kostas, Anagnostopoulos, 2015. "Employment of renewable energy in Jordan: Current status, SWOT and problem analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 490-499.
    9. Terrados, J. & Almonacid, G. & Hontoria, L., 2007. "Regional energy planning through SWOT analysis and strategic planning tools.: Impact on renewables development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1275-1287, August.
    10. Yuan, Jiahai & Li, Xinying & Xu, Chuanbo & Zhao, Changhong & Liu, Yuanxin, 2019. "Investment risk assessment of coal-fired power plants in countries along the Belt and Road initiative based on ANP-Entropy-TODIM method," Energy, Elsevier, vol. 176(C), pages 623-640.
    11. Dincer, Hasan & Yuksel, Serhat, 2019. "Balanced scorecard-based analysis of investment decisions for the renewable energy alternatives: A comparative analysis based on the hybrid fuzzy decision-making approach," Energy, Elsevier, vol. 175(C), pages 1259-1270.
    12. Wu, Yunna & Liao, Mingjuan & Hu, Mengyao & Lin, Jiawei & Zhou, Jianli & Zhang, Buyuan & Xu, Chuanbo, 2020. "A decision framework of low-speed wind farm projects in hilly areas based on DEMATEL-entropy-TODIM method from the sustainability perspective: A case in China," Energy, Elsevier, vol. 213(C).
    13. Erdogmus, Senol & Aras, Haydar & Koç, Eylem, 2006. "Evaluation of alternative fuels for residential heating in Turkey using analytic network process (ANP) with group decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 269-279, June.
    14. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    15. Alao, M.A. & Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Popoola, O.M., 2020. "Multi-criteria decision based waste to energy technology selection using entropy-weighted TOPSIS technique: The case study of Lagos, Nigeria," Energy, Elsevier, vol. 201(C).
    16. Celiktas, Melih Soner & Kocar, Gunnur, 2009. "A quadratic helix approach to evaluate the Turkish renewable energies," Energy Policy, Elsevier, vol. 37(11), pages 4959-4965, November.
    17. Saaty, Thomas L. & Takizawa, Masahiro, 1986. "Dependence and independence: From linear hierarchies to nonlinear networks," European Journal of Operational Research, Elsevier, vol. 26(2), pages 229-237, August.
    18. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    19. Reza Azimi & Abdolreza Yazdani-Chamzini & Mohammad Majid Fouladgar & Edmundas Kazimieras Zavadskas & Mohammad Hossein Basiri, 2011. "Ranking the strategies of mining sector through anp and topsis in a swot framework," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 12(4), pages 670-689, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aikaterini Papapostolou & Charikleia Karakosta & Georgios Apostolidis & Haris Doukas, 2020. "An AHP-SWOT-Fuzzy TOPSIS Approach for Achieving a Cross-Border RES Cooperation," Sustainability, MDPI, vol. 12(7), pages 1-28, April.
    2. Tahseen, Samiha & Karney, Bryan, 2017. "Opportunities for increased hydropower diversion at Niagara: An sSWOT analysis," Renewable Energy, Elsevier, vol. 101(C), pages 757-770.
    3. Grošelj, Petra & Hodges, Donald G. & Zadnik Stirn, Lidija, 2016. "Participatory and multi-criteria analysis for forest (ecosystem) management: A case study of Pohorje, Slovenia," Forest Policy and Economics, Elsevier, vol. 71(C), pages 80-86.
    4. Wu, Yunna & Liao, Mingjuan & Hu, Mengyao & Lin, Jiawei & Zhou, Jianli & Zhang, Buyuan & Xu, Chuanbo, 2020. "A decision framework of low-speed wind farm projects in hilly areas based on DEMATEL-entropy-TODIM method from the sustainability perspective: A case in China," Energy, Elsevier, vol. 213(C).
    5. Solomon E. Uhunamure & Karabo Shale, 2021. "A SWOT Analysis Approach for a Sustainable Transition to Renewable Energy in South Africa," Sustainability, MDPI, vol. 13(7), pages 1-18, April.
    6. Kamran, Muhammad & Fazal, Muhammad Rayyan & Mudassar, Muhammad, 2020. "Towards empowerment of the renewable energy sector in Pakistan for sustainable energy evolution: SWOT analysis," Renewable Energy, Elsevier, vol. 146(C), pages 543-558.
    7. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin, 2020. "Prospective assessment of methanol vehicles in China using FANP-SWOT analysis," Transport Policy, Elsevier, vol. 96(C), pages 60-75.
    8. Chanthawong, Anuman & Dhakal, Shobhakar, 2016. "Stakeholders' perceptions on challenges and opportunities for biodiesel and bioethanol policy development in Thailand," Energy Policy, Elsevier, vol. 91(C), pages 189-206.
    9. Sebastian Goers & Fiona Rumohr & Sebastian Fendt & Louis Gosselin & Gilberto M. Jannuzzi & Rodolfo D. M. Gomes & Stella M. S. Sousa & Reshmi Wolvers, 2020. "The Role of Renewable Energy in Regional Energy Transitions: An Aggregate Qualitative Analysis for the Partner Regions Bavaria, Georgia, Québec, São Paulo, Shandong, Upper Austria, and Western Cape," Sustainability, MDPI, vol. 13(1), pages 1-30, December.
    10. Njoh, Ambe J., 2017. "The SWOT model's utility in evaluating energy technology: Illustrative application of a modified version to assess the sawdust cookstove's sustainability in Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 313-323.
    11. Zhang, Long & Bai, Wuliyasu & Xiao, Huijuan & Ren, Jingzheng, 2021. "Measuring and improving regional energy security: A methodological framework based on both quantitative and qualitative analysis," Energy, Elsevier, vol. 227(C).
    12. Bega, François & Lin, Boqiang, 2023. "China's belt & road initiative energy cooperation: International assessment of the power projects," Energy, Elsevier, vol. 270(C).
    13. Adar, Elanur & Karatop, Buket & İnce, Mahir & Bilgili, Mehmet Sinan, 2016. "Comparison of methods for sustainable energy management with sewage sludge in Turkey based on SWOT-FAHP analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 429-440.
    14. Kahraman, Cengiz & Ertay, Tijen & Buyukozkan, Gulcin, 2006. "A fuzzy optimization model for QFD planning process using analytic network approach," European Journal of Operational Research, Elsevier, vol. 171(2), pages 390-411, June.
    15. Daniel Akinyele & Juri Belikov & Yoash Levron, 2018. "Challenges of Microgrids in Remote Communities: A STEEP Model Application," Energies, MDPI, vol. 11(2), pages 1-35, February.
    16. Pınar Kaya Samut, 2017. "Integrated FANP-f-MIGP model for supplier selection in the renewable energy sector," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(3), pages 427-450, May.
    17. Catron, Jonathan & Stainback, G. Andrew & Dwivedi, Puneet & Lhotka, John M., 2013. "Bioenergy development in Kentucky: A SWOT-ANP analysis," Forest Policy and Economics, Elsevier, vol. 28(C), pages 38-43.
    18. Haque, H.M. Enamul & Dhakal, Shobhakar & Mostafa, S.M.G., 2020. "An assessment of opportunities and challenges for cross-border electricity trade for Bangladesh using SWOT-AHP approach," Energy Policy, Elsevier, vol. 137(C).
    19. Rehman, Obaid ur & Ali, Yousaf & Sabir, Muhammad, 2022. "Risk assessment and mitigation for electric power sectors: A developing country's perspective," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    20. Chatterjee, Kajal & Bandyopadhyay, Abhirup & Ghosh, Amitava & Kar, Samarjit, 2015. "Assessment of environmental factors causing wetland degradation, using Fuzzy Analytic Network Process: A case study on Keoladeo National Park, India," Ecological Modelling, Elsevier, vol. 316(C), pages 1-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:196:y:2022:i:c:p:1281-1293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.