IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v96y2020icp60-75.html
   My bibliography  Save this article

Prospective assessment of methanol vehicles in China using FANP-SWOT analysis

Author

Listed:
  • Li, Chengjiang
  • Negnevitsky, Michael
  • Wang, Xiaolin

Abstract

China has been at the global forefront of alternative fuel vehicle development, including methanol vehicles, in a bid to achieve economic benefits and improve environmental outcomes for the nation. Methanol vehicle pilot projects completed in ten Chinese cities have demonstrated that methanol vehicles can reduce costs and emissions. In considering whether methanol vehicles should be deployed more widely in China, there is a role for bespoke decision-making methods as an aid for assessing the prospects for such an expansion and developing the strategies needed for implementation. In this paper, a FANP (fuzzy analytic network process) - SWOT (strengths, weaknesses, opportunities, and threats) method was proposed and applied to assess the prospects for methanol vehicles in China. Based on the proposed method, an evaluation criteria system that includes 12 criteria from social, technological, economic, environmental, and political fields was established. Each criterion was weighted based on interviews with 16 experts who have extensive experience and expertise related to policy development for methanol vehicles in China. As a result, 10 strategies for the further implementation of methanol vehicles in China were proposed and prioritized. The results form the basis for six proposed policy implications for the further deployment of methanol vehicles. Policies for developing core technologies for methanol vehicles to achieve socioeconomical and environmental benefits are given the highest priority.

Suggested Citation

  • Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin, 2020. "Prospective assessment of methanol vehicles in China using FANP-SWOT analysis," Transport Policy, Elsevier, vol. 96(C), pages 60-75.
  • Handle: RePEc:eee:trapol:v:96:y:2020:i:c:p:60-75
    DOI: 10.1016/j.tranpol.2020.06.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X19307097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2020.06.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Bing & Zhou, Wenji & Hu, Shanying & Li, Qiang & Griffy-Brown, Charla & Jin, Yong, 2010. "CO2 emissions and reduction potential in China’s chemical industry," Energy, Elsevier, vol. 35(12), pages 4663-4670.
    2. Xiaojia Wang & Chenggong Li & Jennifer Shang & Changhui Yang & Bingli Zhang & Xinsheng Ke, 2017. "Strategic Choices of China’s New Energy Vehicle Industry: An Analysis Based on ANP and SWOT," Energies, MDPI, vol. 10(4), pages 1-27, April.
    3. Chen, Lihong & Ren, Jingzheng, 2018. "Multi-attribute sustainability evaluation of alternative aviation fuels based on fuzzy ANP and fuzzy grey relational analysis," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 176-186.
    4. Cui, Chengtian & Li, Xingang & Sui, Hong & Sun, Jinsheng, 2017. "Optimization of coal-based methanol distillation scheme using process superstructure method to maximize energy efficiency," Energy, Elsevier, vol. 119(C), pages 110-120.
    5. Habich-Sobiegalla, Sabrina & Kostka, Genia & Anzinger, Niklas, 2019. "Citizens’ electric vehicle purchase intentions in China: An analysis of micro-level and macro-level factors," Transport Policy, Elsevier, vol. 79(C), pages 223-233.
    6. Kurttila, Mikko & Pesonen, Mauno & Kangas, Jyrki & Kajanus, Miika, 2000. "Utilizing the analytic hierarchy process (AHP) in SWOT analysis -- a hybrid method and its application to a forest-certification case," Forest Policy and Economics, Elsevier, vol. 1(1), pages 41-52, May.
    7. Catron, Jonathan & Stainback, G. Andrew & Dwivedi, Puneet & Lhotka, John M., 2013. "Bioenergy development in Kentucky: A SWOT-ANP analysis," Forest Policy and Economics, Elsevier, vol. 28(C), pages 38-43.
    8. Song-Man Wu & Hu-Chen Liu & Li-En Wang, 2017. "Hesitant fuzzy integrated MCDM approach for quality function deployment: a case study in electric vehicle," International Journal of Production Research, Taylor & Francis Journals, vol. 55(15), pages 4436-4449, August.
    9. Turcksin, Laurence & Macharis, Cathy & Lebeau, Kenneth & Boureima, Faycal & Van Mierlo, Joeri & Bram, Svend & De Ruyck, Jacques & Mertens, Lara & Jossart, Jean-Marc & Gorissen, Leen & Pelkmans, Luc, 2011. "A multi-actor multi-criteria framework to assess the stakeholder support for different biofuel options: The case of Belgium," Energy Policy, Elsevier, vol. 39(1), pages 200-214, January.
    10. Zhao, Xingang & Liu, Pingkuo, 2014. "Focus on bioenergy industry development and energy security in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 302-312.
    11. Dong-Shang Chang & Sheng-Hung Chen & Chia-Wei Hsu & Allen H. Hu & Gwo-Hshiung Tzeng, 2015. "Evaluation Framework for Alternative Fuel Vehicles: Sustainable Development Perspective," Sustainability, MDPI, vol. 7(9), pages 1-25, August.
    12. Vancoillie, J. & Demuynck, J. & Sileghem, L. & Van De Ginste, M. & Verhelst, S. & Brabant, L. & Van Hoorebeke, L., 2013. "The potential of methanol as a fuel for flex-fuel and dedicated spark-ignition engines," Applied Energy, Elsevier, vol. 102(C), pages 140-149.
    13. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    14. Tsita, Katerina G. & Pilavachi, Petros A., 2012. "Evaluation of alternative fuels for the Greek road transport sector using the analytic hierarchy process," Energy Policy, Elsevier, vol. 48(C), pages 677-686.
    15. Wang, Xin & Ge, Yunshan & Liu, Linlin & Peng, Zihang & Hao, Lijun & Yin, Hang & Ding, Yan & Wang, Junfang, 2015. "Evaluation on toxic reduction and fuel economy of a gasoline direct injection- (GDI-) powered passenger car fueled with methanol–gasoline blends with various substitution ratios," Applied Energy, Elsevier, vol. 157(C), pages 134-143.
    16. Fancello, Gianfranco & Carta, Michele & Fadda, Paolo, 2019. "Road intersections ranking for road safety improvement: Comparative analysis of multi-criteria decision making methods," Transport Policy, Elsevier, vol. 80(C), pages 188-196.
    17. Shao, Yanmin & Qiao, Han & Wang, Shouyang, 2017. "What determines China's crude oil importing trade patterns? Empirical evidences from 55 countries between 1992 and 2015," Energy Policy, Elsevier, vol. 109(C), pages 854-862.
    18. Su, Li-Wang & Li, Xiang-Rong & Sun, Zuo-Yu, 2013. "The consumption, production and transportation of methanol in China: A review," Energy Policy, Elsevier, vol. 63(C), pages 130-138.
    19. Yang, Chi-Jen & Jackson, Robert B., 2012. "China's growing methanol economy and its implications for energy and the environment," Energy Policy, Elsevier, vol. 41(C), pages 878-884.
    20. Terrados, J. & Almonacid, G. & Hontoria, L., 2007. "Regional energy planning through SWOT analysis and strategic planning tools.: Impact on renewables development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1275-1287, August.
    21. Xie, Kechang & Li, Wenying & Zhao, Wei, 2010. "Coal chemical industry and its sustainable development in China," Energy, Elsevier, vol. 35(11), pages 4349-4355.
    22. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin & Yue, Wen Long & Zou, Xin, 2019. "Multi-criteria analysis of policies for implementing clean energy vehicles in China," Energy Policy, Elsevier, vol. 129(C), pages 826-840.
    23. Shrestha, Ram K. & Alavalapati, Janaki R. R. & Kalmbacher, Robert S., 2004. "Exploring the potential for silvopasture adoption in south-central Florida: an application of SWOT-AHP method," Agricultural Systems, Elsevier, vol. 81(3), pages 185-199, September.
    24. Yang, Xiaofang & Jin, Wen & Jiang, Hai & Xie, Qianyan & Shen, Wei & Han, Weijian, 2017. "Car ownership policies in China: Preferences of residents and influence on the choice of electric cars," Transport Policy, Elsevier, vol. 58(C), pages 62-71.
    25. Safaei Mohamadabadi, H. & Tichkowsky, G. & Kumar, A., 2009. "Development of a multi-criteria assessment model for ranking of renewable and non-renewable transportation fuel vehicles," Energy, Elsevier, vol. 34(1), pages 112-125.
    26. Shakoor Shahabi, Reza & Basiri, Mohammad Hossein & Rashidi Kahag, Mahdi & Ahangar Zonouzi, Samad, 2014. "An ANP–SWOT approach for interdependency analysis and prioritizing the Iran׳s steel scrap industry strategies," Resources Policy, Elsevier, vol. 42(C), pages 18-26.
    27. Macharis, Cathy & Bernardini, Annalia, 2015. "Reviewing the use of Multi-Criteria Decision Analysis for the evaluation of transport projects: Time for a multi-actor approach," Transport Policy, Elsevier, vol. 37(C), pages 177-186.
    28. Onut, Semih & Tuzkaya, Umut R. & Torun, Erçin, 2011. "Selecting container port via a fuzzy ANP-based approach: A case study in the Marmara Region, Turkey," Transport Policy, Elsevier, vol. 18(1), pages 182-193, January.
    29. Tzeng, Gwo-Hshiung & Lin, Cheng-Wei & Opricovic, Serafim, 2005. "Multi-criteria analysis of alternative-fuel buses for public transportation," Energy Policy, Elsevier, vol. 33(11), pages 1373-1383, July.
    30. Zhen, Xudong & Wang, Yang, 2015. "An overview of methanol as an internal combustion engine fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 477-493.
    31. Arsić, Sanela & Nikolić, Djordje & Živković, Živan, 2017. "Hybrid SWOT - ANP - FANP model for prioritization strategies of sustainable development of ecotourism in National Park Djerdap, Serbia," Forest Policy and Economics, Elsevier, vol. 80(C), pages 11-26.
    32. Reinsberger, Kathrin & Brudermann, Thomas & Hatzl, Stefanie & Fleiß, Eva & Posch, Alfred, 2015. "Photovoltaic diffusion from the bottom-up: Analytical investigation of critical factors," Applied Energy, Elsevier, vol. 159(C), pages 178-187.
    33. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    34. Dyson, Robert G., 2004. "Strategic development and SWOT analysis at the University of Warwick," European Journal of Operational Research, Elsevier, vol. 152(3), pages 631-640, February.
    35. Qiu, Huanguang & Sun, Laixiang & Huang, Jikun & Rozelle, Scott, 2012. "Liquid biofuels in China: Current status, government policies, and future opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3095-3104.
    36. Sehatpour, Mohammad-Hadi & Kazemi, Aliyeh & Sehatpour, Hesam-eddin, 2017. "Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 295-310.
    37. Reza Azimi & Abdolreza Yazdani-Chamzini & Mohammad Majid Fouladgar & Edmundas Kazimieras Zavadskas & Mohammad Hossein Basiri, 2011. "Ranking the strategies of mining sector through anp and topsis in a swot framework," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 12(4), pages 670-689, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hung-Lung Lin & Yu-Yu Ma & Chin-Tsai Lin, 2021. "Evaluating Pallet Investment Strategy Using Fuzzy Analytic Network Process: A Case in Chinese Chain Supermarkets," Mathematics, MDPI, vol. 9(24), pages 1-26, December.
    2. Duan, Xiongbo & Feng, Lining & Liu, Haibo & Jiang, Pengfei & Chen, Chao & Sun, Zhiqiang, 2023. "Experimental investigation on exhaust emissions of a heavy-duty vehicle powered by a methanol-fuelled spark ignition engine under world Harmonized Transient Cycle and actual on-road driving conditions," Energy, Elsevier, vol. 282(C).
    3. Hayati, Mohammad & Mahdevari, Satar & Barani, Kianoush, 2023. "An improved MADM-based SWOT analysis for strategic planning in dimension stones industry," Resources Policy, Elsevier, vol. 80(C).
    4. Li, Chengjiang & Hao, Qianwen & Wang, Honglei & Hu, Yu-jie & Xu, Guoteng & Qin, Quande & Wang, Xiaolin & Negnevitsky, Michael, 2024. "Assessing green methanol vehicles' deployment with life cycle assessment-system dynamics model," Applied Energy, Elsevier, vol. 363(C).
    5. Julio Henrique Costa Nobrega & Izabela Simon Rampasso & Vasco Sanchez-Rodrigues & Osvaldo Luiz Gonçalves Quelhas & Walter Leal Filho & Milena Pavan Serafim & Rosley Anholon, 2021. "Logistics 4.0 in Brazil: Critical Analysis and Relationships with SDG 9 Targets," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
    6. Jia, Tingwen & Li, Chengjiang & Wang, Honglei & Hu, Yu-jie & Wang, Shiyuan & Xu, Guoteng & Hoang, Anh Tuan, 2024. "Subsidy policy or dual-credit policy? Evolutionary game analysis of green methanol vehicles promotion," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin & Yue, Wen Long & Zou, Xin, 2019. "Multi-criteria analysis of policies for implementing clean energy vehicles in China," Energy Policy, Elsevier, vol. 129(C), pages 826-840.
    2. Chanthawong, Anuman & Dhakal, Shobhakar, 2016. "Stakeholders' perceptions on challenges and opportunities for biodiesel and bioethanol policy development in Thailand," Energy Policy, Elsevier, vol. 91(C), pages 189-206.
    3. Chengjiang Li & Tingwen Jia & Shiyuan Wang & Xiaolin Wang & Michael Negnevitsky & Honglei Wang & Yujie Hu & Weibin Xu & Na Zhou & Gang Zhao, 2023. "Methanol Vehicles in China: A Review from a Policy Perspective," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    4. Grošelj, Petra & Hodges, Donald G. & Zadnik Stirn, Lidija, 2016. "Participatory and multi-criteria analysis for forest (ecosystem) management: A case study of Pohorje, Slovenia," Forest Policy and Economics, Elsevier, vol. 71(C), pages 80-86.
    5. Li, Chengjiang & Jia, Tingwen & Wang, Honglei & Wang, Xiaolin & Negnevitsky, Michael & Hu, Yu-jie & Zhao, Gang & Wang, Liang, 2023. "Assessing the prospect of deploying green methanol vehicles in China from energy, environmental and economic perspectives," Energy, Elsevier, vol. 263(PE).
    6. Martin Kügemann & Heracles Polatidis, 2019. "Multi-Criteria Decision Analysis of Road Transportation Fuels and Vehicles: A Systematic Review and Classification of the Literature," Energies, MDPI, vol. 13(1), pages 1-21, December.
    7. Zhü, kèyù & Zhao, Shuang-yao & Yang, Shanlin & Liang, Changyong & Gu, Dongxiao, 2016. "Where is the way for rare earth industry of China: An analysis via ANP-SWOT approach," Resources Policy, Elsevier, vol. 49(C), pages 349-357.
    8. Chen, Lihong & Ren, Jingzheng, 2018. "Multi-attribute sustainability evaluation of alternative aviation fuels based on fuzzy ANP and fuzzy grey relational analysis," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 176-186.
    9. Tahseen, Samiha & Karney, Bryan, 2017. "Opportunities for increased hydropower diversion at Niagara: An sSWOT analysis," Renewable Energy, Elsevier, vol. 101(C), pages 757-770.
    10. Kaytez, Fazıl, 2022. "Evaluation of priority strategies for the expansion of installed wind power capacity in Turkey using a fuzzy analytic network process analysis," Renewable Energy, Elsevier, vol. 196(C), pages 1281-1293.
    11. Ullah, Kafait & Hamid, Salman & Mirza, Faisal Mehmood & Shakoor, Usman, 2018. "Prioritizing the gaseous alternatives for the road transport sector of Pakistan: A multi criteria decision making analysis," Energy, Elsevier, vol. 165(PB), pages 1072-1084.
    12. Haque, H.M. Enamul & Dhakal, Shobhakar & Mostafa, S.M.G., 2020. "An assessment of opportunities and challenges for cross-border electricity trade for Bangladesh using SWOT-AHP approach," Energy Policy, Elsevier, vol. 137(C).
    13. Ecer, Fatih, 2021. "A consolidated MCDM framework for performance assessment of battery electric vehicles based on ranking strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Tabibian, Seyed Shayan & Sharifzadeh, Mahdi, 2023. "Statistical and analytical investigation of methanol applications, production technologies, value-chain and economy with a special focus on renewable methanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    15. Ibrahim M. Hezam & Arunodaya Raj Mishra & Pratibha Rani & Fausto Cavallaro & Abhijit Saha & Jabir Ali & Wadim Strielkowski & Dalia Štreimikienė, 2022. "A Hybrid Intuitionistic Fuzzy-MEREC-RS-DNMA Method for Assessing the Alternative Fuel Vehicles with Sustainability Perspectives," Sustainability, MDPI, vol. 14(9), pages 1-32, May.
    16. Darshini, Dina & Dwivedi, Puneet & Glenk, Klaus, 2013. "Capturing stakeholders´ views on oil palm-based biofuel and biomass utilisation in Malaysia," Energy Policy, Elsevier, vol. 62(C), pages 1128-1137.
    17. Sepehr Ghazinoory & Mansoureh Abdi & Mandana Azadegan-Mehr, 2010. "Swot Methodology: A State-of-the-Art Review for the Past, A Framework for the Future," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 12(1), pages 24-48, November.
    18. Alev Taskin Gumus & A. Yesim Yayla & Erkan Çelik & Aytac Yildiz, 2013. "A Combined Fuzzy-AHP and Fuzzy-GRA Methodology for Hydrogen Energy Storage Method Selection in Turkey," Energies, MDPI, vol. 6(6), pages 1-16, June.
    19. Liang, Hanwei & Ren, Jingzheng & Lin, Ruojue & Liu, Yue, 2019. "Alternative-fuel based vehicles for sustainable transportation: A fuzzy group decision supporting framework for sustainability prioritization," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 33-43.
    20. Nuthan Prasad, B.S. & Pandey, Jayashish Kumar & Kumar, G.N., 2020. "Impact of changing compression ratio on engine characteristics of an SI engine fueled with equi-volume blend of methanol and gasoline," Energy, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:96:y:2020:i:c:p:60-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.