IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v131y2019icp854-860.html
   My bibliography  Save this article

Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method

Author

Listed:
  • Naqvi, Salman Raza
  • Tariq, Rumaisa
  • Hameed, Zeeshan
  • Ali, Imtiaz
  • Naqvi, Muhammad
  • Chen, Wei-Hsin
  • Ceylan, Selim
  • Rashid, Harith
  • Ahmad, Junaid
  • Taqvi, Syed A.
  • Shahbaz, Muhammad

Abstract

This study aims to investigate the thermo-kinetics of high-ash sewage sludge using thermogravimetric analysis. Sewage sludge was dried, pulverized and heated non-isothermally from 25 to 800 °C at different heating rates (5, 10 and 20 °C/min) in N2 atmosphere. TG and DTG results indicate that the sewage sludge pyrolysis may be divided into three stages. Coats-Redfern integral method was applied in the 2nd and 3rd stage to estimate the activation energy and pre-exponential factor from mass loss data using five major reaction mechanisms. The low-temperature stable components (LTSC) of the sewage sludge degraded in the temperature regime of 250–450 °C while high-temperature stable components (HTSC) decomposed in the temperature range of 450–700 °C. According to the results, first-order reaction model (F1) showed higher Ea with better R2 for all heating rates. D3, N1, and S1 produced higher Ea at higher heating rates for LTSC pyrolysis and lower Ea with the increase of heating rates for HTSC pyrolysis. All models showed positive ΔH except F1.5. Among all models, Diffusion (D1, D2, D3) and phase interfacial models (S1, S2) showed higher ΔG as compared to reaction, nucleation, and power-law models in section I and section II.

Suggested Citation

  • Naqvi, Salman Raza & Tariq, Rumaisa & Hameed, Zeeshan & Ali, Imtiaz & Naqvi, Muhammad & Chen, Wei-Hsin & Ceylan, Selim & Rashid, Harith & Ahmad, Junaid & Taqvi, Syed A. & Shahbaz, Muhammad, 2019. "Pyrolysis of high ash sewage sludge: Kinetics and thermodynamic analysis using Coats-Redfern method," Renewable Energy, Elsevier, vol. 131(C), pages 854-860.
  • Handle: RePEc:eee:renene:v:131:y:2019:i:c:p:854-860
    DOI: 10.1016/j.renene.2018.07.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118308917
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.07.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manara, P. & Zabaniotou, A., 2012. "Towards sewage sludge based biofuels via thermochemical conversion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2566-2582.
    2. Won, Wangyun & Maravelias, Christos T., 2017. "Thermal fractionation and catalytic upgrading of lignocellulosic biomass to biofuels: Process synthesis and analysis," Renewable Energy, Elsevier, vol. 114(PB), pages 357-366.
    3. Fonts, Isabel & Gea, Gloria & Azuara, Manuel & Ábrego, Javier & Arauzo, Jesús, 2012. "Sewage sludge pyrolysis for liquid production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2781-2805.
    4. Jayaraman, Kandasamy & Kok, Mustafa Versan & Gokalp, Iskender, 2017. "Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends," Renewable Energy, Elsevier, vol. 101(C), pages 293-300.
    5. Fytili, D. & Zabaniotou, A., 2008. "Utilization of sewage sludge in EU application of old and new methods--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 116-140, January.
    6. Naqvi, Salman Raza & Jamshaid, Sana & Naqvi, Muhammad & Farooq, Wasif & Niazi, Muhammad Bilal Khan & Aman, Zaeem & Zubair, Muhammad & Ali, Majid & Shahbaz, Muhammad & Inayat, Abrar & Afzal, Waheed, 2018. "Potential of biomass for bioenergy in Pakistan based on present case and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1247-1258.
    7. Toklu, E., 2017. "Biomass energy potential and utilization in Turkey," Renewable Energy, Elsevier, vol. 107(C), pages 235-244.
    8. Korai, Muhammad Safar & Mahar, Rasool Bux & Uqaili, Muhammad Aslam, 2017. "The feasibility of municipal solid waste for energy generation and its existing management practices in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 338-353.
    9. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
    2. Praspaliauskas, M. & Pedišius, N., 2017. "A review of sludge characteristics in Lithuania's wastewater treatment plants and perspectives of its usage in thermal processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 899-907.
    3. Patel, Savankumar & Kundu, Sazal & Halder, Pobitra & Rickards, Lauren & Paz-Ferreiro, Jorge & Surapaneni, Aravind & Madapusi, Srinivasan & Shah, Kalpit, 2019. "Thermogravimetric Analysis of biosolids pyrolysis in the presence of mineral oxides," Renewable Energy, Elsevier, vol. 141(C), pages 707-716.
    4. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
    7. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    8. Wu, Junnan & Liao, Yanfen & Lin, Yan & Tian, Yunlong & Ma, Xiaoqian, 2019. "Study on thermal decomposition kinetics model of sewage sludge and wheat based on multi distributed activation energy," Energy, Elsevier, vol. 185(C), pages 795-803.
    9. Prajitno, Hermawan & Park, Jongkeun & Ryu, Changkook & Park, Ho Young & Lim, Hyun Soo & Kim, Jaehoon, 2018. "Effects of solvent participation and controlled product separation on biomass liquefaction: A case study of sewage sludge," Applied Energy, Elsevier, vol. 218(C), pages 402-416.
    10. Zhang, Xin & Deng, Honghu & Hou, Xueyi & Qiu, Rongliang & Chen, Zhihua, 2019. "Pyrolytic behavior and kinetic of wood sawdust at isothermal and non-isothermal conditions," Renewable Energy, Elsevier, vol. 142(C), pages 284-294.
    11. Jonathan L. Deenik & Michael J. Cooney, 2016. "The Potential Benefits and Limitations of Corn Cob and Sewage Sludge Biochars in an Infertile Oxisol," Sustainability, MDPI, vol. 8(2), pages 1-18, January.
    12. Athar Mahmood & Xiukang Wang & Ahmad Naeem Shahzad & Sajid Fiaz & Habib Ali & Maria Naqve & Muhammad Mansoor Javaid & Sahar Mumtaz & Mehwish Naseer & Renji Dong, 2021. "Perspectives on Bioenergy Feedstock Development in Pakistan: Challenges and Opportunities," Sustainability, MDPI, vol. 13(15), pages 1-24, July.
    13. Wu, Xiaoyan & Tian, Yu & Zhou, Xiaoliang & Kong, Xiaowei & Zhang, Jun & Zuo, Wei & Wang, Dezhen & Ye, Xuesong, 2016. "Performance and long-term stability of nickel/yttria-stabilized zirconia anode-supported solid oxide fuel cell in simulated biosyngas," Energy, Elsevier, vol. 114(C), pages 1-9.
    14. Wang, Chengxin & Bi, Haobo & Lin, Qizhao & Jiang, Xuedan & Jiang, Chunlong, 2020. "Co-pyrolysis of sewage sludge and rice husk by TG–FTIR–MS: Pyrolysis behavior, kinetics, and condensable/non-condensable gases characteristics," Renewable Energy, Elsevier, vol. 160(C), pages 1048-1066.
    15. Elalami, D. & Carrere, H. & Monlau, F. & Abdelouahdi, K. & Oukarroum, A. & Barakat, A., 2019. "Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Salvilla, John Nikko V. & Ofrasio, Bjorn Ivan G. & Rollon, Analiza P. & Manegdeg, Ferdinand G. & Abarca, Ralf Ruffel M. & de Luna, Mark Daniel G., 2020. "Synergistic co-pyrolysıs of polyolefin plastics with wood and agricultural wastes for biofuel production," Applied Energy, Elsevier, vol. 279(C).
    17. Magdziarz, Aneta & Wilk, Małgorzata & Gajek, Marcin & Nowak-Woźny, Dorota & Kopia, Agnieszka & Kalemba-Rec, Izabela & Koziński, Janusz A., 2016. "Properties of ash generated during sewage sludge combustion: A multifaceted analysis," Energy, Elsevier, vol. 113(C), pages 85-94.
    18. Juan Félix González & Carmen María Álvez-Medina & Sergio Nogales-Delgado, 2023. "Biogas Steam Reforming in Wastewater Treatment Plants: Opportunities and Challenges," Energies, MDPI, vol. 16(17), pages 1-35, September.
    19. Di Fraia, S. & Massarotti, N. & Vanoli, L. & Costa, M., 2016. "Thermo-economic analysis of a novel cogeneration system for sewage sludge treatment," Energy, Elsevier, vol. 115(P3), pages 1560-1571.
    20. Tang, Siqi & Zheng, Chunmiao & Yan, Feng & Shao, Ningning & Tang, Yuanyuan & Zhang, Zuotai, 2018. "Product characteristics and kinetics of sewage sludge pyrolysis driven by alkaline earth metals," Energy, Elsevier, vol. 153(C), pages 921-932.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:131:y:2019:i:c:p:854-860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.