IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p2409-2416.html
   My bibliography  Save this article

Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: Performance, energy balance and, enhancement mechanism

Author

Listed:
  • Chen, Hong
  • Yi, Hao
  • Li, Hechao
  • Guo, Xuesong
  • Xiao, Benyi

Abstract

The effects of thermal pretreatment (TP) and thermal-alkaline pretreatment (TAP) on a continuous mesophilic anaerobic digestion (AD) of sewage sludge were investigated. Both TP (134 ± 1 °C and 30 min) and TAP (pH 12, 134 ± 1 °C and 30 min) released, hydrolyzed, and mineralized the organic matter of sludge, but TAP provided superior results. The methane yields of thermal pretreated sludge (TPS) and thermal-alkaline pretreated sludge (TAPS) were 1.88 times and 2.20 times that of raw sludge (RS), respectively. Moreover, the average methane content of biogas produced from TAPS (73.4 ± 3.4%) was higher than that from TPS (69.1 ± 3.1%) and from RS (67.2 ± 2.9%). The energy balance of the total process with TAP was the highest (4.326 kJ/g VS) and that of the RS AD was the lowest (2.045 kJ/g VS). Both pretreatments enhanced the sludge hydrolysis with TAP presenting higher efficiency, and shifted the rate-limiting step of the anaerobic sludge digestion from hydrolysis to methanogenesis.

Suggested Citation

  • Chen, Hong & Yi, Hao & Li, Hechao & Guo, Xuesong & Xiao, Benyi, 2020. "Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: Performance, energy balance and, enhancement mechanism," Renewable Energy, Elsevier, vol. 147(P1), pages 2409-2416.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:2409-2416
    DOI: 10.1016/j.renene.2019.10.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119315423
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Yanwen & Linville, Jessica L. & Urgun-Demirtas, Meltem & Mintz, Marianne M. & Snyder, Seth W., 2015. "An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 346-362.
    2. Xiao, Benyi & Zhang, Wenzhe & Yi, Hao & Qin, Yu & Wu, Jing & Liu, Junxin & Li, Yu-You, 2019. "Biogas production by two-stage thermophilic anaerobic co-digestion of food waste and paper waste: Effect of paper waste ratio," Renewable Energy, Elsevier, vol. 132(C), pages 1301-1309.
    3. Wu, Li-Jie & Qin, Yu & Hojo, Toshimasa & Li, Yu-You, 2015. "Upgrading of anaerobic digestion of waste activated sludge by temperature-phased process with recycle," Energy, Elsevier, vol. 87(C), pages 381-389.
    4. Ariunbaatar, Javkhlan & Panico, Antonio & Esposito, Giovanni & Pirozzi, Francesco & Lens, Piet N.L., 2014. "Pretreatment methods to enhance anaerobic digestion of organic solid waste," Applied Energy, Elsevier, vol. 123(C), pages 143-156.
    5. Zhen, Guangyin & Lu, Xueqin & Kato, Hiroyuki & Zhao, Youcai & Li, Yu-You, 2017. "Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 559-577.
    6. Leite, Wanderli Rogério Moreira & Gottardo, Marco & Pavan, Paolo & Belli Filho, Paulo & Bolzonella, David, 2016. "Performance and energy aspects of single and two phase thermophilic anaerobic digestion of waste activated sludge," Renewable Energy, Elsevier, vol. 86(C), pages 1324-1331.
    7. Xiao, Benyi & Chen, Xia & Han, Yunping & Liu, Junxin & Guo, Xuesong, 2018. "Bioelectrochemical enhancement of the anaerobic digestion of thermal-alkaline pretreated sludge in microbial electrolysis cells," Renewable Energy, Elsevier, vol. 115(C), pages 1177-1183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akhilesh Kumar Singh & Priti Pal & Saurabh Singh Rathore & Uttam Kumar Sahoo & Prakash Kumar Sarangi & Piotr Prus & Paweł Dziekański, 2023. "Sustainable Utilization of Biowaste Resources for Biogas Production to Meet Rural Bioenergy Requirements," Energies, MDPI, vol. 16(14), pages 1-22, July.
    2. Panigrahi, Sagarika & Sharma, Hari Bhakta & Tiwari, Bikash Ranjan & Krishna, Nakka Vamsi & Ghangrekar, M.M. & Dubey, Brajesh Kumar, 2021. "Insight into understanding the performance of electrochemical pretreatment on improving anaerobic biodegradability of yard waste," Renewable Energy, Elsevier, vol. 180(C), pages 1166-1178.
    3. Xiuqin Cao & Yibin Wang & Ting Liu, 2022. "Effects of Iron Powder Addition and Thermal Hydrolysis on Methane Production and the Archaeal Community during the Anaerobic Digestion of Sludge," IJERPH, MDPI, vol. 19(8), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brémond, Ulysse & de Buyer, Raphaëlle & Steyer, Jean-Philippe & Bernet, Nicolas & Carrere, Hélène, 2018. "Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 583-604.
    2. Kor-Bicakci, Gokce & Eskicioglu, Cigdem, 2019. "Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 423-443.
    3. Theresa Menzel & Peter Neubauer & Stefan Junne, 2020. "Role of Microbial Hydrolysis in Anaerobic Digestion," Energies, MDPI, vol. 13(21), pages 1-29, October.
    4. Yin, Changkai & Shen, Yanwen & Zhu, Nanwen & Huang, Qiujie & Lou, Ziyang & Yuan, Haiping, 2018. "Anaerobic digestion of waste activated sludge with incineration bottom ash: Enhanced methane production and CO2 sequestration," Applied Energy, Elsevier, vol. 215(C), pages 503-511.
    5. Jay N. Meegoda & Brian Li & Kush Patel & Lily B. Wang, 2018. "A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion," IJERPH, MDPI, vol. 15(10), pages 1-16, October.
    6. Di Capua, Francesco & Spasiano, Danilo & Giordano, Andrea & Adani, Fabrizio & Fratino, Umberto & Pirozzi, Francesco & Esposito, Giovanni, 2020. "High-solid anaerobic digestion of sewage sludge: challenges and opportunities," Applied Energy, Elsevier, vol. 278(C).
    7. Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    8. Elagroudy, S. & Radwan, A.G. & Banadda, N. & Mostafa, Nagwan G. & Owusu, P.A. & Janajreh, I., 2020. "Mathematical models comparison of biogas production from anaerobic digestion of microwave pretreated mixed sludge," Renewable Energy, Elsevier, vol. 155(C), pages 1009-1020.
    9. Azman, Samet & Milh, Hannah & Somers, Matthijs H. & Zhang, Huili & Huybrechts, Ine & Meers, Erik & Meesschaert, Boudewijn & Dewil, Raf & Appels, Lise, 2020. "Ultrasound-assisted digestate treatment of manure digestate for increased biogas production in small pilot scale anaerobic digesters," Renewable Energy, Elsevier, vol. 152(C), pages 664-673.
    10. Kossińska, Nina & Krzyżyńska, Renata & Ghazal, Heba & Jouhara, Hussam, 2023. "Hydrothermal carbonisation of sewage sludge and resulting biofuels as a sustainable energy source," Energy, Elsevier, vol. 275(C).
    11. Gunes, Burcu & Stokes, Joseph & Davis, Paul & Connolly, Cathal & Lawler, Jenny, 2019. "Pre-treatments to enhance biogas yield and quality from anaerobic digestion of whiskey distillery and brewery wastes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    12. Derick Lima & Gregory Appleby & Li Li, 2023. "A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants," Energies, MDPI, vol. 16(5), pages 1-34, March.
    13. Dalke, Rachel & Demro, Delaney & Khalid, Yusra & Wu, Haoran & Urgun-Demirtas, Meltem, 2021. "Current status of anaerobic digestion of food waste in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    14. Hwijin Seo & Anna Joicy & Myoung Eun Lee & Chaeyoung Rhee & Seung Gu Shin & Si-Kyung Cho & Yongtae Ahn, 2023. "Development of a Primary Sewage Sludge Pretreatment Strategy Using a Combined Alkaline–Ultrasound Pretreatment for Enhancing Microbial Electrolysis Cell Performance," Energies, MDPI, vol. 16(10), pages 1-14, May.
    15. Ma, Chaonan & Liu, Jianyong & Ye, Min & Zou, Lianpei & Qian, Guangren & Li, Yu-You, 2018. "Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 700-709.
    16. Ruffino, Barbara & Cerutti, Alberto & Campo, Giuseppe & Scibilia, Gerardo & Lorenzi, Eugenio & Zanetti, Mariachiara, 2020. "Thermophilic vs. mesophilic anaerobic digestion of waste activated sludge: Modelling and energy balance for its applicability at a full scale WWTP," Renewable Energy, Elsevier, vol. 156(C), pages 235-248.
    17. Sekoai, Patrick T. & Ghimire, Anish & Ezeokoli, Obinna T. & Rao, Subramanya & Ngan, Wing Y. & Habimana, Olivier & Yao, Yuan & Yang, Pu & Yiu Fung, Aster Hei & Yoro, Kelvin O. & Daramola, Michael O. & , 2021. "Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    18. Srisowmeya, G. & Chakravarthy, M. & Nandhini Devi, G., 2020. "Critical considerations in two-stage anaerobic digestion of food waste – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    19. Adam Masłoń & Joanna Czarnota & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2020. "The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland," Energies, MDPI, vol. 13(22), pages 1-21, November.
    20. Wang, Hui & Zeng, Shufang & Pan, Xiaoli & Liu, Lei & Chen, Yunjie & Tang, Jiawei & Luo, Feng, 2022. "Bioelectrochemically assisting anaerobic digestion enhanced methane production under low-temperature," Renewable Energy, Elsevier, vol. 194(C), pages 1071-1083.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:2409-2416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.