IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v132y2019icp1301-1309.html
   My bibliography  Save this article

Biogas production by two-stage thermophilic anaerobic co-digestion of food waste and paper waste: Effect of paper waste ratio

Author

Listed:
  • Xiao, Benyi
  • Zhang, Wenzhe
  • Yi, Hao
  • Qin, Yu
  • Wu, Jing
  • Liu, Junxin
  • Li, Yu-You

Abstract

The effects of paper waste (PW) ratio on biogas production by two-stage thermophilic anaerobic co-digestion (coAD) of food waste (FW) and PW, two main components of organic fraction of municipal solid waste, were evaluated in lab-scale continuously stirred tank systems with semi-continuous feeding. Four PW ratios (0, 20, 40, and 50%) were studied in the test. The experimental results showed the two-stage thermophilic coAD could operate stably after an adjustment period at all PW ratios. Although the increase of PW ratio decreased methane content, production and yield, reaction rates of four AD steps, it could increase the methane production of substrate when the FW was fixed. The pH, total volatile fatty acids, total alkalinity, and total ammonium of the sludge in the second stage of AD, also decreased with the increase of PW ratio in the test. The change of the substrate's organic composition, increase of carbohydrate and decrease of protein and lipid, were the main reason for the decrease of methane content, production and yield and changes of the second stage sludge characteristics. An apposite PW ratio (PW-20%) could enhance the degradation of matters (TS, VS and TCOD).

Suggested Citation

  • Xiao, Benyi & Zhang, Wenzhe & Yi, Hao & Qin, Yu & Wu, Jing & Liu, Junxin & Li, Yu-You, 2019. "Biogas production by two-stage thermophilic anaerobic co-digestion of food waste and paper waste: Effect of paper waste ratio," Renewable Energy, Elsevier, vol. 132(C), pages 1301-1309.
  • Handle: RePEc:eee:renene:v:132:y:2019:i:c:p:1301-1309
    DOI: 10.1016/j.renene.2018.09.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118310930
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.09.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Changqing & Shi, Wenxiao & Hong, Jinglan & Zhang, Fangfang & Chen, Wei, 2015. "Life cycle assessment of food waste-based biogas generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 169-177.
    2. Zhang, Jingxin & Loh, Kai-Chee & Li, Wangliang & Lim, Jun Wei & Dai, Yanjun & Tong, Yen Wah, 2017. "Three-stage anaerobic digester for food waste," Applied Energy, Elsevier, vol. 194(C), pages 287-295.
    3. Koch, Konrad & Helmreich, Brigitte & Drewes, Jörg E., 2015. "Co-digestion of food waste in municipal wastewater treatment plants: Effect of different mixtures on methane yield and hydrolysis rate constant," Applied Energy, Elsevier, vol. 137(C), pages 250-255.
    4. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    5. Leite, Wanderli Rogério Moreira & Gottardo, Marco & Pavan, Paolo & Belli Filho, Paulo & Bolzonella, David, 2016. "Performance and energy aspects of single and two phase thermophilic anaerobic digestion of waste activated sludge," Renewable Energy, Elsevier, vol. 86(C), pages 1324-1331.
    6. Mao, Chunlan & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2015. "Review on research achievements of biogas from anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 540-555.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Jialiang & Qu, Anan & Ming, Siqi & Zhang, Yuanhui & Duan, Na, 2022. "Binary-component anaerobic co-digestion: Synergies and microbial profiles," Renewable Energy, Elsevier, vol. 201(P2), pages 1-10.
    2. Mahmudul, H.M. & Rasul, M.G. & Akbar, D. & Narayanan, R. & Mofijur, M., 2022. "Food waste as a source of sustainable energy: Technical, economical, environmental and regulatory feasibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    3. Li, Wanwu & Khalid, Habiba & Amin, Farrukh Raza & Zhang, Han & Dai, Zhuangqiang & Chen, Chang & Liu, Guangqing, 2020. "Biomethane production characteristics, kinetic analysis, and energy potential of different paper wastes in anaerobic digestion," Renewable Energy, Elsevier, vol. 157(C), pages 1081-1088.
    4. Hatem Abushammala & Muhammad Adil Masood & Salma Taqi Ghulam & Jia Mao, 2023. "On the Conversion of Paper Waste and Rejects into High-Value Materials and Energy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    5. Chen, Hong & Yi, Hao & Li, Hechao & Guo, Xuesong & Xiao, Benyi, 2020. "Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: Performance, energy balance and, enhancement mechanism," Renewable Energy, Elsevier, vol. 147(P1), pages 2409-2416.
    6. Baldi, F. & Pecorini, I. & Iannelli, R., 2019. "Comparison of single-stage and two-stage anaerobic co-digestion of food waste and activated sludge for hydrogen and methane production," Renewable Energy, Elsevier, vol. 143(C), pages 1755-1765.
    7. Srisowmeya, G. & Chakravarthy, M. & Nandhini Devi, G., 2020. "Critical considerations in two-stage anaerobic digestion of food waste – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Bipasyana Dhungana & Sunil Prasad Lohani & Michael Marsolek, 2022. "Anaerobic Co-Digestion of Food Waste with Livestock Manure at Ambient Temperature: A Biogas Based Circular Economy and Sustainable Development Goals," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    9. Elsayed, Mahmoud & Blel, Walid & Soliman, Mohamed & Andres, Yves & Hassan, Raouf, 2021. "Semi-continuous co-digestion of sludge, fallen leaves, and grass performance," Energy, Elsevier, vol. 221(C).
    10. Bedoić, Robert & Špehar, Ana & Puljko, Josip & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2020. "Opportunities and challenges: Experimental and kinetic analysis of anaerobic co-digestion of food waste and rendering industry streams for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    11. Xu, Fuqing & Okopi, Solomon Inalegwu & Jiang, Yongmei & Chen, Zhou & Meng, Liyun & Li, Yebo & Sun, Weimin & Li, Chaokun, 2022. "Multi-criteria assessment of food waste and waste paper anaerobic co-digestion: Effects of inoculation ratio, total solids content, and feedstock composition," Renewable Energy, Elsevier, vol. 194(C), pages 40-50.
    12. Sekoai, Patrick T. & Ghimire, Anish & Ezeokoli, Obinna T. & Rao, Subramanya & Ngan, Wing Y. & Habimana, Olivier & Yao, Yuan & Yang, Pu & Yiu Fung, Aster Hei & Yoro, Kelvin O. & Daramola, Michael O. & , 2021. "Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    3. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    4. Ma, Guiling & Chen, Yanting & Ndegwa, Pius, 2021. "Association between methane yield and microbiota abundance in the anaerobic digestion process: A meta-regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    6. A Aziz, Md Maniruzzaman & Kassim, Khairul Anuar & ElSergany, Moetaz & Anuar, Syed & Jorat, M. Ehsan & Yaacob, H. & Ahsan, Amimul & Imteaz, Monzur A. & Arifuzzaman,, 2020. "Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Olkis, Christopher & Brandani, Stefano & Santori, Giulio, 2019. "Design and experimental study of a small scale adsorption desalinator," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Nghiem, Long D. & Koch, Konrad & Bolzonella, David & Drewes, Jörg E., 2017. "Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 354-362.
    9. Raquel Iglesias & Raúl Muñoz & María Polanco & Israel Díaz & Ana Susmozas & Antonio D. Moreno & María Guirado & Nely Carreras & Mercedes Ballesteros, 2021. "Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development," Energies, MDPI, vol. 14(10), pages 1-30, May.
    10. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Choong, Yee Yaw & Chou, Kian Weng & Norli, Ismail, 2018. "Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2993-3006.
    12. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Brémond, Ulysse & de Buyer, Raphaëlle & Steyer, Jean-Philippe & Bernet, Nicolas & Carrere, Hélène, 2018. "Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 583-604.
    14. Susanne Theuerl & Johanna Klang & Annette Prochnow, 2019. "Process Disturbances in Agricultural Biogas Production—Causes, Mechanisms and Effects on the Biogas Microbiome: A Review," Energies, MDPI, vol. 12(3), pages 1-20, January.
    15. Rajaeifar, Mohammad Ali & Sadeghzadeh Hemayati, Saeed & Tabatabaei, Meisam & Aghbashlo, Mortaza & Mahmoudi, Seyed Bagher, 2019. "A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 423-442.
    16. Kucharska, Karolina & Hołowacz, Iwona & Konopacka-Łyskawa, Donata & Rybarczyk, Piotr & Kamiński, Marian, 2018. "Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels," Renewable Energy, Elsevier, vol. 129(PA), pages 384-408.
    17. Li, Xue & Mupondwa, Edmund, 2018. "Commercial feasibility of an integrated closed-loop ethanol-feedlot-biodigester system based on triticale feedstock in Canadian Prairies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 401-413.
    18. Chatterjee, Biswabandhu & Mazumder, Debabrata, 2019. "Role of stage-separation in the ubiquitous development of Anaerobic Digestion of Organic Fraction of Municipal Solid Waste: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 439-469.
    19. Amar Naji & Sabrina Guérin Rechdaoui & Elise Jabagi & Carlyne Lacroix & Sam Azimi & Vincent Rocher, 2023. "Pilot-Scale Anaerobic Co-Digestion of Wastewater Sludge with Lignocellulosic Waste: A Study of Performance and Limits," Energies, MDPI, vol. 16(18), pages 1-13, September.
    20. Wang, Hui & Zeng, Shufang & Pan, Xiaoli & Liu, Lei & Chen, Yunjie & Tang, Jiawei & Luo, Feng, 2022. "Bioelectrochemically assisting anaerobic digestion enhanced methane production under low-temperature," Renewable Energy, Elsevier, vol. 194(C), pages 1071-1083.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:132:y:2019:i:c:p:1301-1309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.