IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v152y2021ics1364032121009916.html
   My bibliography  Save this article

Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization

Author

Listed:
  • Roopnarain, Ashira
  • Rama, Haripriya
  • Ndaba, Busiswa
  • Bello-Akinosho, Maryam
  • Bamuza-Pemu, Emomotimi
  • Adeleke, Rasheed

Abstract

Increasing global demand for green energy has necessitated more research interest in anaerobic digestion. Due to the dual benefits of anaerobic digestion, in organic waste management and energy generation, it is rated among the best renewable energy generation options. An important challenge that limits acceptability and adoption of this technology is the quality and quantity of anaerobic digestion products, especially biogas and digestate. A practical solution to this challenge is process optimization. However, process optimization is not easily achieved due to the complexity of the microbiome driving the anaerobic digestion process, which has contributed to anaerobic digesters being considered ‘black boxes’. Unravelling the ‘black box’ would aid in fine-tuning operational conditions, process parameters, intra- and inter-phase interactions as well as rate limiting factors during each phase of the production cycle, thereby optimizing the anaerobic digestion process. To achieve this level of technological advancement, cooperation between experts that understand both the microbial processes and technological design of digesters is important. When factors are optimized, implementation of the optimized conditions through automation may prevent process errors and failures, thereby enhancing quality and quantity of anaerobic digestion products. In addition, process optimization should also reflect economic viability vis-à-vis small-scale and large-scale biogas production systems. This review provides a detailed overview of individual factors that could affect the performance of the anaerobic digestion process with critical interpretations and suggestions. This work could be employed as a good base to build integrative models or ecological indices that interrelate these factors.

Suggested Citation

  • Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121009916
    DOI: 10.1016/j.rser.2021.111717
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121009916
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Solé-Bundó, Maria & Passos, Fabiana & Romero-Güiza, Maycoll S. & Ferrer, Ivet & Astals, Sergi, 2019. "Co-digestion strategies to enhance microalgae anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 471-482.
    2. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    3. Yazdani, Mohammad & Ebrahimi-Nik, Mohammadali & Heidari, Ava & Abbaspour-Fard, Mohammad Hossein, 2019. "Improvement of biogas production from slaughterhouse wastewater using biosynthesized iron nanoparticles from water treatment sludge," Renewable Energy, Elsevier, vol. 135(C), pages 496-501.
    4. Ghanimeh, Sophia & Khalil, Charbel Abou & Stoecklein, Daniel & Kommasojula, Aditya & Ganapathysubramanian, Baskar, 2020. "Flow sculpting enabled anaerobic digester for energy recovery from low-solid content waste," Renewable Energy, Elsevier, vol. 154(C), pages 841-848.
    5. Andante Hadi Pandyaswargo & Premakumara Jagath Dickella Gamaralalage & Chen Liu & Michael Knaus & Hiroshi Onoda & Faezeh Mahichi & Yanghui Guo, 2019. "Challenges and an Implementation Framework for Sustainable Municipal Organic Waste Management Using Biogas Technology in Emerging Asian Countries," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    6. Mutungwazi, Asheal & Mukumba, Patrick & Makaka, Golden, 2018. "Biogas digester types installed in South Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 172-180.
    7. Mata-Alvarez, J. & Dosta, J. & Romero-Güiza, M.S. & Fonoll, X. & Peces, M. & Astals, S., 2014. "A critical review on anaerobic co-digestion achievements between 2010 and 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 412-427.
    8. Shakourifar, Niloofar & Krisa, David & Eskicioglu, Cigdem, 2020. "Anaerobic co-digestion of municipal waste sludge with grease trap waste mixture: Point of process failure determination," Renewable Energy, Elsevier, vol. 154(C), pages 117-127.
    9. Cowley, Cortney & Brorsen, B. Wade, 2018. "Anaerobic Digester Production and Cost Functions," Ecological Economics, Elsevier, vol. 152(C), pages 347-357.
    10. Sayedin, Farid & Kermanshahi-pour, Azadeh & He, Quan Sophia, 2019. "Evaluating the potential of a novel anaerobic baffled reactor for anaerobic digestion of thin stillage: Effect of organic loading rate, hydraulic retention time and recycle ratio," Renewable Energy, Elsevier, vol. 135(C), pages 975-983.
    11. Roopnarain, Ashira & Adeleke, Rasheed, 2017. "Current status, hurdles and future prospects of biogas digestion technology in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1162-1179.
    12. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1392-1407.
    13. Romero-Güiza, M.S. & Vila, J. & Mata-Alvarez, J. & Chimenos, J.M. & Astals, S., 2016. "The role of additives on anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1486-1499.
    14. Aguilar-Moreno, Guadalupe Stefanny & Navarro-Cerón, Elizabeth & Velázquez-Hernández, Azucena & Hernández-Eugenio, Guadalupe & Aguilar-Méndez, Miguel Ángel & Espinosa-Solares, Teodoro, 2020. "Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles," Renewable Energy, Elsevier, vol. 147(P1), pages 204-213.
    15. Patel, Anil Kumar & Vaisnav, Neha & Mathur, Anshu & Gupta, Ravi & Tuli, Deepak Kumar, 2016. "Whey waste as potential feedstock for biohydrogen production," Renewable Energy, Elsevier, vol. 98(C), pages 221-225.
    16. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    17. Abbasi, Tasneem & Tauseef, S.M. & Abbasi, S.A., 2012. "Anaerobic digestion for global warming control and energy generation—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3228-3242.
    18. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2016. "Broadening the potential of biogas in Sub-Saharan Africa: An assessment of feasible technologies and feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 556-571.
    19. Divya, D. & Gopinath, L.R. & Merlin Christy, P., 2015. "A review on current aspects and diverse prospects for enhancing biogas production in sustainable means," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 690-699.
    20. Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
    21. Wu, Di & Li, Lei & Zhao, Xiaofei & Peng, Yun & Yang, Pingjin & Peng, Xuya, 2019. "Anaerobic digestion: A review on process monitoring," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 1-12.
    22. Rasheed, Rizwan & Khan, Naghman & Yasar, Abdullah & Su, Yuehong & Tabinda, Amtul Bari, 2016. "Design and cost-benefit analysis of a novel anaerobic industrial bioenergy plant in Pakistan," Renewable Energy, Elsevier, vol. 90(C), pages 242-247.
    23. Zhang, Le & Loh, Kai-Chee & Lim, Jun Wei & Zhang, Jingxin, 2019. "Bioinformatics analysis of metagenomics data of biogas-producing microbial communities in anaerobic digesters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 110-126.
    24. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    25. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    26. McKennedy, Janet & Sherlock, Orla, 2015. "Anaerobic digestion of marine macroalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1781-1790.
    27. Jordan C. Angle & Timothy H. Morin & Lindsey M. Solden & Adrienne B. Narrowe & Garrett J. Smith & Mikayla A. Borton & Camilo Rey-Sanchez & Rebecca A. Daly & Golnazalsdat Mirfenderesgi & David W. Hoyt , 2017. "Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    28. Christian Rinke & Patrick Schwientek & Alexander Sczyrba & Natalia N. Ivanova & Iain J. Anderson & Jan-Fang Cheng & Aaron Darling & Stephanie Malfatti & Brandon K. Swan & Esther A. Gies & Jeremy A. Do, 2013. "Insights into the phylogeny and coding potential of microbial dark matter," Nature, Nature, vol. 499(7459), pages 431-437, July.
    29. Lieven Wittebolle & Massimo Marzorati & Lieven Clement & Annalisa Balloi & Daniele Daffonchio & Kim Heylen & Paul De Vos & Willy Verstraete & Nico Boon, 2009. "Initial community evenness favours functionality under selective stress," Nature, Nature, vol. 458(7238), pages 623-626, April.
    30. Yang, Zhiman & Guo, Rongbo & Xu, Xiaohui & Fan, Xiaolei & Luo, Shengjun, 2011. "Fermentative hydrogen production from lipid-extracted microalgal biomass residues," Applied Energy, Elsevier, vol. 88(10), pages 3468-3472.
    31. Daniel Gómez & Juan Luis Ramos-Suárez & Belén Fernández & Eduard Muñoz & Laura Tey & Maycoll Romero-Güiza & Felipe Hansen, 2019. "Development of a Modified Plug-Flow Anaerobic Digester for Biogas Production from Animal Manures," Energies, MDPI, vol. 12(13), pages 1-17, July.
    32. Tauseef, S.M. & Abbasi, Tasneem & Abbasi, S.A., 2013. "Energy recovery from wastewaters with high-rate anaerobic digesters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 704-741.
    33. Algapani, Dalal E. & Qiao, Wei & Ricci, Marina & Bianchi, Davide & M. Wandera, Simon & Adani, Fabrizio & Dong, Renjie, 2019. "Bio-hydrogen and bio-methane production from food waste in a two-stage anaerobic digestion process with digestate recirculation," Renewable Energy, Elsevier, vol. 130(C), pages 1108-1115.
    34. Abdelsalam, E. & Samer, M. & Attia, Y.A. & Abdel-Hadi, M.A. & Hassan, H.E. & Badr, Y., 2017. "Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure," Energy, Elsevier, vol. 120(C), pages 842-853.
    35. John J. Milledge & Birthe V. Nielsen & Supattra Maneein & Patricia J. Harvey, 2019. "A Brief Review of Anaerobic Digestion of Algae for Bioenergy," Energies, MDPI, vol. 12(6), pages 1-22, March.
    36. Gahyun Baek & Jaai Kim & Jinsu Kim & Changsoo Lee, 2018. "Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion," Energies, MDPI, vol. 11(1), pages 1-18, January.
    37. Susanne Theuerl & Johanna Klang & Annette Prochnow, 2019. "Process Disturbances in Agricultural Biogas Production—Causes, Mechanisms and Effects on the Biogas Microbiome: A Review," Energies, MDPI, vol. 12(3), pages 1-20, January.
    38. Mao, Chunlan & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2015. "Review on research achievements of biogas from anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 540-555.
    39. Mazloomi, Kaveh & Gomes, Chandima, 2012. "Hydrogen as an energy carrier: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3024-3033.
    40. Claudinei De Souza Guimarães & David Rodrigues da Silva Maia & Eduardo Gonçalves Serra, 2018. "Construction of Biodigesters to Optimize the Production of Biogas from Anaerobic Co-Digestion of Food Waste and Sewage," Energies, MDPI, vol. 11(4), pages 1-10, April.
    41. Montingelli, M.E. & Tedesco, S. & Olabi, A.G., 2015. "Biogas production from algal biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 961-972.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Ruixia & Geng, Tao & Yao, Zonglu & Yu, Jiadong & Luo, Juan & Wang, Hongliang & Zhao, Lixin, 2023. "Characteristics of instability and suitable early-warning indicators for cornstalk-fed anaerobic digestion subjected to various sudden changes," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhatnagar, N. & Ryan, D. & Murphy, R. & Enright, A.M., 2022. "A comprehensive review of green policy, anaerobic digestion of animal manure and chicken litter feedstock potential – Global and Irish perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    3. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Cerrillo, Míriam & Burgos, Laura & Ruiz, Beatriz & Barrena, Raquel & Moral-Vico, Javier & Font, Xavier & Sánchez, Antoni & Bonmatí, August, 2021. "In-situ methane enrichment in continuous anaerobic digestion of pig slurry by zero-valent iron nanoparticles addition under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 180(C), pages 372-382.
    5. Susanne Theuerl & Johanna Klang & Annette Prochnow, 2019. "Process Disturbances in Agricultural Biogas Production—Causes, Mechanisms and Effects on the Biogas Microbiome: A Review," Energies, MDPI, vol. 12(3), pages 1-20, January.
    6. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    8. A Aziz, Md Maniruzzaman & Kassim, Khairul Anuar & ElSergany, Moetaz & Anuar, Syed & Jorat, M. Ehsan & Yaacob, H. & Ahsan, Amimul & Imteaz, Monzur A. & Arifuzzaman,, 2020. "Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    10. Gao, Zhenghui & Alshehri, Khaled & Li, Yuan & Qian, Hang & Sapsford, Devin & Cleall, Peter & Harbottle, Michael, 2022. "Advances in biological techniques for sustainable lignocellulosic waste utilization in biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    11. Alejandro Moure Abelenda & Kirk T. Semple & George Aggidis & Farid Aiouache, 2022. "Circularity of Bioenergy Residues: Acidification of Anaerobic Digestate Prior to Addition of Wood Ash," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    12. Arshad, Muhammad & Bano, Ijaz & Khan, Nasrullah & Shahzad, Mirza Imran & Younus, Muhammad & Abbas, Mazhar & Iqbal, Munawar, 2018. "Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1241-1246.
    13. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    14. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    15. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    16. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    18. Choong, Yee Yaw & Chou, Kian Weng & Norli, Ismail, 2018. "Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2993-3006.
    19. Rivera-Hernández, Yessica & Hernández-Eugenio, Guadalupe & Balagurusamy, Nagamani & Espinosa-Solares, Teodoro, 2022. "Sargassum-pig manure co-digestion: An alternative for bioenergy production and treating a polluting coastal waste," Renewable Energy, Elsevier, vol. 199(C), pages 1336-1344.
    20. Aguilar-Moreno, Guadalupe Stefanny & Navarro-Cerón, Elizabeth & Velázquez-Hernández, Azucena & Hernández-Eugenio, Guadalupe & Aguilar-Méndez, Miguel Ángel & Espinosa-Solares, Teodoro, 2020. "Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles," Renewable Energy, Elsevier, vol. 147(P1), pages 204-213.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121009916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.