IDEAS home Printed from
   My bibliography  Save this article

Hydrogen as an energy carrier: Prospects and challenges


  • Mazloomi, Kaveh
  • Gomes, Chandima


This paper provides an insight to the feasibility of adopting hydrogen as a key energy carrier and fuel source in the near future. It is shown that hydrogen has several advantages, as well as few drawbacks in using for the above purposes. The research shows that hydrogen will be a key player in storing energy that is wasted at generation stage in large-scale power grids by off-peak diversion to dummy loads. The estimations show that by the year of 2050 there will be a hydrogen demand of over 42 million metric tons or 45 billion gallon gasoline equivalent (GGE) in the United States of America alone which can fuel up 342 million light-duty vehicles for 51×1011miles (82×1011km) travel per year. The production at distributed level has also been discussed. The paper also presents the levels of risk in production, storage and distribution stages and proposes possible techniques to address safety issues. It is shown that the storage in small to medium scale containers is much economical compared to doing the same at large-scale containers. The study concludes that hydrogen has a promising future to be a highly feasible energy carrier and energy source itself at consumer level.

Suggested Citation

  • Mazloomi, Kaveh & Gomes, Chandima, 2012. "Hydrogen as an energy carrier: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3024-3033.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:5:p:3024-3033
    DOI: 10.1016/j.rser.2012.02.028

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Hoffman, Peter, 1994. "Hydrogen--the optimum chemical fuel," Applied Energy, Elsevier, vol. 47(2-3), pages 183-199.
    2. Botterud, Audun & Yildiz, Bilge & Conzelmann, Guenter & Petri, Mark C., 2008. "Nuclear hydrogen: An assessment of product flexibility and market viability," Energy Policy, Elsevier, vol. 36(10), pages 3961-3973, October.
    3. Askari, Hossein & Krichene, Noureddine, 2010. "An oil demand and supply model incorporating monetary policy," Energy, Elsevier, vol. 35(5), pages 2013-2021.
    4. McDowall, William & Eames, Malcolm, 2006. "Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy: A review of the hydrogen futures literature," Energy Policy, Elsevier, vol. 34(11), pages 1236-1250, July.
    5. Farzanegan, Mohammad Reza & Markwardt, Gunther, 2009. "The effects of oil price shocks on the Iranian economy," Energy Economics, Elsevier, vol. 31(1), pages 134-151, January.
    6. Gupta, Eshita, 2008. "Oil vulnerability index of oil-importing countries," Energy Policy, Elsevier, vol. 36(3), pages 1195-1211, March.
    7. Zhou, Li, 2005. "Progress and problems in hydrogen storage methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(4), pages 395-408, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    2. Ehteshami, Seyyed Mohsen Mousavi & Chan, S.H., 2014. "The role of hydrogen and fuel cells to store renewable energy in the future energy network – potentials and challenges," Energy Policy, Elsevier, vol. 73(C), pages 103-109.
    3. Fayaz, H. & Saidur, R. & Razali, N. & Anuar, F.S. & Saleman, A.R. & Islam, M.R., 2012. "An overview of hydrogen as a vehicle fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5511-5528.
    4. Bergthorson, Jeffrey M. & Yavor, Yinon & Palecka, Jan & Georges, William & Soo, Michael & Vickery, James & Goroshin, Samuel & Frost, David L. & Higgins, Andrew J., 2017. "Metal-water combustion for clean propulsion and power generation," Applied Energy, Elsevier, vol. 186(P1), pages 13-27.
    5. Koumi Ngoh, Simon & Njomo, Donatien, 2012. "An overview of hydrogen gas production from solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6782-6792.
    6. Abedin, M.J. & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Rahman, S.M. Ashrafur & Masum, B.M., 2013. "Energy balance of internal combustion engines using alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 20-33.
    7. Assaf, Jihane & Shabani, Bahman, 2016. "Transient simulation modelling and energy performance of a standalone solar-hydrogen combined heat and power system integrated with solar-thermal collectors," Applied Energy, Elsevier, vol. 178(C), pages 66-77.
    8. Hou, Tengfei & Zhang, Shaoyin & Chen, Yongdong & Wang, Dazhi & Cai, Weijie, 2015. "Hydrogen production from ethanol reforming: Catalysts and reaction mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 132-148.
    9. repec:eee:rensus:v:81:y:2018:i:p2:p:1988-2001 is not listed on IDEAS
    10. repec:eee:appene:v:212:y:2018:i:c:p:57-83 is not listed on IDEAS
    11. repec:eee:rensus:v:79:y:2017:i:c:p:1091-1098 is not listed on IDEAS
    12. Nasir Uddin, Md. & Daud, W.M.A. Wan & Abbas, Hazim F., 2013. "Potential hydrogen and non-condensable gases production from biomass pyrolysis: Insights into the process variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 204-224.
    13. Santos, D.M.F. & Šljukić, B. & Sequeira, C.A.C. & Macciò, D. & Saccone, A. & Figueiredo, J.L., 2013. "Electrocatalytic approach for the efficiency increase of electrolytic hydrogen production: Proof-of-concept using platinum--dysprosium alloys," Energy, Elsevier, vol. 50(C), pages 486-492.
    14. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.
    15. Tarigan, Ari K.M. & Bayer, Stian B., 2012. "Temporal change analysis of public attitude, knowledge and acceptance of hydrogen vehicles in Greater Stavanger, 2006–2009," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5535-5544.
    16. Garra, Patxi & Leyssens, Gontrand & Allgaier, Olivier & Schönnenbeck, Cornelius & Tschamber, Valérie & Brilhac, Jean-François & Tahtouh, Toni & Guézet, Olivier & Allano, Sylvain, 2017. "Magnesium/air combustion at pilot scale and subsequent PM and NOx emissions," Applied Energy, Elsevier, vol. 189(C), pages 578-587.
    17. Bergthorson, J.M. & Goroshin, S. & Soo, M.J. & Julien, P. & Palecka, J. & Frost, D.L. & Jarvis, D.J., 2015. "Direct combustion of recyclable metal fuels for zero-carbon heat and power," Applied Energy, Elsevier, vol. 160(C), pages 368-382.
    18. Mazloomi, S.K. & Sulaiman, Nasri, 2012. "Influencing factors of water electrolysis electrical efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4257-4263.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:5:p:3024-3033. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.