IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v213y2018icp136-147.html
   My bibliography  Save this article

Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste

Author

Listed:
  • Li, Yangyang
  • Jin, Yiying
  • Li, Hailong
  • Borrion, Aiduan
  • Yu, Zhixin
  • Li, Jinhui

Abstract

Organics degradation is vital for food waste anaerobic digestion performance, however, the influence of organics degradation on biomethane production process has not been fully understood. This study aims to thoroughly investigate the organics degradation performance and identify the interaction between the reduction of organic components and methane yield based on the evaluation on 12 types of food waste. Five models (i.e. exponential, Fitzhugh, transference function, Cone and modified Gompertz models) were compared regarding the prediction of organic degradation and the results showed that the exponential model fit the experiments best, whereas kinetic parameters could not be commonly used for all situations. The exponential model was then used to study the impacts of organics reduction on the methane production and results revealed that the cumulative methane production (385–627 mL/g volatile solid) increased exponentially with the removal efficiency of volatile solids, lipids, and proteins for all feedstocks, whereas volatile solid reduction increased exponentially and linearly, respectively, with the removal efficiency of lipids and proteins. Additionally, protein degradation increased exponentially with the reduction efficiency of lipids. The experimental data and model simulation results suggested that higher methane production (530–548 mL/g volatile solid) and removal efficiency of volatile solids (65.0–67.8%), lipids (77.8–78.2%), and proteins (54.7–58.2%) could be achieved in a shorter digestion retention when carbohydrate content was higher than 47.6%, protein content lower than 24.1%, and lipid content lower than 28.3%.

Suggested Citation

  • Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
  • Handle: RePEc:eee:appene:v:213:y:2018:i:c:p:136-147
    DOI: 10.1016/j.apenergy.2018.01.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918300333
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.01.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Browne, James D. & Allen, Eoin & Murphy, Jerry D., 2014. "Assessing the variability in biomethane production from the organic fraction of municipal solid waste in batch and continuous operation," Applied Energy, Elsevier, vol. 128(C), pages 307-314.
    2. Zhang, Jingxin & Loh, Kai-Chee & Li, Wangliang & Lim, Jun Wei & Dai, Yanjun & Tong, Yen Wah, 2017. "Three-stage anaerobic digester for food waste," Applied Energy, Elsevier, vol. 194(C), pages 287-295.
    3. Yin, Yao & Liu, Ya-Juan & Meng, Shu-Juan & Kiran, Esra Uçkun & Liu, Yu, 2016. "Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion," Applied Energy, Elsevier, vol. 179(C), pages 1131-1137.
    4. Zhang, Cunsheng & Su, Haijia & Baeyens, Jan & Tan, Tianwei, 2014. "Reviewing the anaerobic digestion of food waste for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 383-392.
    5. Kafle, Gopi Krishna & Kim, Sang Hun, 2013. "Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation," Applied Energy, Elsevier, vol. 103(C), pages 61-72.
    6. Murphy, J. D. & McKeogh, E. & Kiely, G., 2004. "Technical/economic/environmental analysis of biogas utilisation," Applied Energy, Elsevier, vol. 77(4), pages 407-427, April.
    7. Koch, Konrad & Helmreich, Brigitte & Drewes, Jörg E., 2015. "Co-digestion of food waste in municipal wastewater treatment plants: Effect of different mixtures on methane yield and hydrolysis rate constant," Applied Energy, Elsevier, vol. 137(C), pages 250-255.
    8. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin, 2016. "Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste," Applied Energy, Elsevier, vol. 172(C), pages 47-58.
    9. Hilkiah Igoni, A. & Ayotamuno, M.J. & Eze, C.L. & Ogaji, S.O.T. & Probert, S.D., 2008. "Designs of anaerobic digesters for producing biogas from municipal solid-waste," Applied Energy, Elsevier, vol. 85(6), pages 430-438, June.
    10. Cirne, D.G. & Paloumet, X. & Björnsson, L. & Alves, M.M. & Mattiasson, B., 2007. "Anaerobic digestion of lipid-rich waste—Effects of lipid concentration," Renewable Energy, Elsevier, vol. 32(6), pages 965-975.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao, Bing & Zhang, Yue & Heaven, Sonia & Banks, Charles J., 2020. "Predicting pH rise as a control measure for integration of CO2 biomethanisation with anaerobic digestion," Applied Energy, Elsevier, vol. 277(C).
    2. Garcia, Natalia Herrero & Mattioli, Andrea & Gil, Aida & Frison, Nicola & Battista, Federico & Bolzonella, David, 2019. "Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 1-10.
    3. Mahmudul, H.M. & Rasul, M.G. & Akbar, D. & Narayanan, R. & Mofijur, M., 2022. "Food waste as a source of sustainable energy: Technical, economical, environmental and regulatory feasibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    4. Gahyun Baek & Danbee Kim & Jinsu Kim & Hanwoong Kim & Changsoo Lee, 2020. "Treatment of Cattle Manure by Anaerobic Co-Digestion with Food Waste and Pig Manure: Methane Yield and Synergistic Effect," IJERPH, MDPI, vol. 17(13), pages 1-13, July.
    5. Li, Yue & Chen, Yinguang & Wu, Jiang, 2019. "Enhancement of methane production in anaerobic digestion process: A review," Applied Energy, Elsevier, vol. 240(C), pages 120-137.
    6. Liu, Yueling & Feng, Kai & Li, Huan, 2019. "Rapid conversion from food waste to electricity by combining anaerobic fermentation and liquid catalytic fuel cell," Applied Energy, Elsevier, vol. 233, pages 395-402.
    7. Guangxin Ren & Chunlan Mao & Ningning Zhai & Boran Wang & Zhichao Liu & Xiaojiao Wang & Gaihe Yang, 2019. "A New Adjustment Strategy to Relieve Inhibition during Anaerobic Codigestion of Food Waste and Cow Manure," Sustainability, MDPI, vol. 11(10), pages 1-14, May.
    8. Alessandro Neri & Bruno Bernardi & Giuseppe Zimbalatti & Souraya Benalia, 2023. "An Overview of Anaerobic Digestion of Agricultural By-Products and Food Waste for Biomethane Production," Energies, MDPI, vol. 16(19), pages 1-20, September.
    9. Bedoić, Robert & Špehar, Ana & Puljko, Josip & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2020. "Opportunities and challenges: Experimental and kinetic analysis of anaerobic co-digestion of food waste and rendering industry streams for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan, Pak Chuen & de Toledo, Renata Alves & Shim, Hojae, 2018. "Anaerobic co-digestion of food waste and domestic wastewater – Effect of intermittent feeding on short and long chain fatty acids accumulation," Renewable Energy, Elsevier, vol. 124(C), pages 129-135.
    2. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Feng, Kai & Li, Huan & Deng, Zhou & Wang, Qiao & Zhang, Yangyang & Zheng, Chengzhi, 2020. "Effect of pre-fermentation types on the potential of methane production and energy recovery from food waste," Renewable Energy, Elsevier, vol. 146(C), pages 1588-1595.
    4. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin, 2016. "Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste," Applied Energy, Elsevier, vol. 172(C), pages 47-58.
    5. Morin, Philippe & Marcos, Bernard & Moresoli, Christine & Laflamme, Claude B., 2010. "Economic and environmental assessment on the energetic valorization of organic material for a municipality in Quebec, Canada," Applied Energy, Elsevier, vol. 87(1), pages 275-283, January.
    6. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    7. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Salah Jellali & Yassine Charabi & Muhammad Usman & Abdullah Al-Badi & Mejdi Jeguirim, 2021. "Investigations on Biogas Recovery from Anaerobic Digestion of Raw Sludge and Its Mixture with Agri-Food Wastes: Application to the Largest Industrial Estate in Oman," Sustainability, MDPI, vol. 13(7), pages 1-20, March.
    9. Lübken, Manfred & Koch, Konrad & Gehring, Tito & Horn, Harald & Wichern, Marc, 2015. "Parameter estimation and long-term process simulation of a biogas reactor operated under trace elements limitation," Applied Energy, Elsevier, vol. 142(C), pages 352-360.
    10. Abdullah Nsair & Senem Onen Cinar & Ayah Alassali & Hani Abu Qdais & Kerstin Kuchta, 2020. "Operational Parameters of Biogas Plants: A Review and Evaluation Study," Energies, MDPI, vol. 13(15), pages 1-27, July.
    11. Romero-Güiza, M.S. & Peces, M. & Astals, S. & Benavent, J. & Valls, J. & Mata-Alvarez, J., 2014. "Implementation of a prototypal optical sorter as core of the new pre-treatment configuration of a mechanical–biological treatment plant treating OFMSW through anaerobic digestion," Applied Energy, Elsevier, vol. 135(C), pages 63-70.
    12. De Clercq, Djavan & Wen, Zongguo & Fan, Fei & Caicedo, Luis, 2016. "Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1676-1685.
    13. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    14. Xiaofeng Li & Jingjing Huang & Yiyun Liu & Tao Huang & Claudia Maurer & Martin Kranert, 2019. "Effects of Salt on Anaerobic Digestion of Food Waste with Different Component Characteristics and Fermentation Concentrations," Energies, MDPI, vol. 12(18), pages 1-14, September.
    15. Grosser, Anna, 2018. "Determination of methane potential of mixtures composed of sewage sludge, organic fraction of municipal waste and grease trap sludge using biochemical methane potential assays. A comparison of BMP tes," Energy, Elsevier, vol. 143(C), pages 488-499.
    16. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin & Nie, Yongfeng, 2017. "Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion," Energy, Elsevier, vol. 118(C), pages 377-386.
    17. Wu, Benteng & Lin, Richen & O'Shea, Richard & Deng, Chen & Rajendran, Karthik & Murphy, Jerry D., 2021. "Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Xiao, Benyi & Zhang, Wenzhe & Yi, Hao & Qin, Yu & Wu, Jing & Liu, Junxin & Li, Yu-You, 2019. "Biogas production by two-stage thermophilic anaerobic co-digestion of food waste and paper waste: Effect of paper waste ratio," Renewable Energy, Elsevier, vol. 132(C), pages 1301-1309.
    19. Vo, Truc T.Q. & Xia, Ao & Wall, David M. & Murphy, Jerry D., 2017. "Use of surplus wind electricity in Ireland to produce compressed renewable gaseous transport fuel through biological power to gas systems," Renewable Energy, Elsevier, vol. 105(C), pages 495-504.
    20. Ma, Chaonan & Liu, Jianyong & Ye, Min & Zou, Lianpei & Qian, Guangren & Li, Yu-You, 2018. "Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 700-709.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:213:y:2018:i:c:p:136-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.