IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v124y2018icp129-135.html
   My bibliography  Save this article

Anaerobic co-digestion of food waste and domestic wastewater – Effect of intermittent feeding on short and long chain fatty acids accumulation

Author

Listed:
  • Chan, Pak Chuen
  • de Toledo, Renata Alves
  • Shim, Hojae

Abstract

This work investigates the anaerobic co-digestion of a mixture of food waste and domestic wastewater (0.09, v/v) using an upflow anaerobic sludge blanket (UASB) reactor to generate renewable energy in form of biogas. The reactor was operated under the conditions of mesophilic temperature (35 °C), pH 7.2, and 10 days of hydraulic retention time (HRT). The chemical oxygen demand (COD) removal efficiency and the methane content were 80 ± 1.3% and 56%, respectively, when the reactor was operated continuously at the organic loading rate of 2 g COD/L/d in 2 days of operation, while the COD removal efficiency started decreasing and reached 61 ± 1.7% after 10 days, with the methane content of 37%. The deterioration of reactor efficiency on converting organic matter to methane was attributed to the accumulation of long chain fatty acids (LCFAs) onto the sludge. To overcome the physical and metabolic inhibition by LCFAs, the application of intermittent feeding mode (48 h feed and 48 h feedless) was chosen and applied at different organic loading rates (OLRs; 2–4.5 g COD/L/d) to evaluate the reactor performance in terms of COD removal, methane content, accumulation of LCFAs and short chain fatty acids (SCFAs). The COD removal efficiency and methane content were 82 ± 1.1%, 75 ± 0.9%, and 62 ± 1.5% and 58%, 56%, and 51% at the OLR of 2, 3, and 4.5 g COD/L/d, respectively. The 48 h feed/48 h feedless cycle seemed a promising alternative to treat real food wastewater. However, further studies are still necessary to better evaluate the application of intermittent feeding to treat different mixtures of food waste and domestic wastewater at higher organic loading rates.

Suggested Citation

  • Chan, Pak Chuen & de Toledo, Renata Alves & Shim, Hojae, 2018. "Anaerobic co-digestion of food waste and domestic wastewater – Effect of intermittent feeding on short and long chain fatty acids accumulation," Renewable Energy, Elsevier, vol. 124(C), pages 129-135.
  • Handle: RePEc:eee:renene:v:124:y:2018:i:c:p:129-135
    DOI: 10.1016/j.renene.2017.07.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117306419
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.07.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zarkadas, Ioannis S. & Sofikiti, Artemis S. & Voudrias, Evangelos A. & Pilidis, Georgios A., 2015. "Thermophilic anaerobic digestion of pasteurised food wastes and dairy cattle manure in batch and large volume laboratory digesters: Focussing on mixing ratios," Renewable Energy, Elsevier, vol. 80(C), pages 432-440.
    2. Zhang, Cunsheng & Su, Haijia & Baeyens, Jan & Tan, Tianwei, 2014. "Reviewing the anaerobic digestion of food waste for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 383-392.
    3. Kafle, Gopi Krishna & Kim, Sang Hun, 2013. "Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation," Applied Energy, Elsevier, vol. 103(C), pages 61-72.
    4. Chen, Guanyi & Liu, Gang & Yan, Beibei & Shan, Rui & Wang, Jianan & Li, Ting & Xu, Weiwei, 2016. "Experimental study of co-digestion of food waste and tall fescue for bio-gas production," Renewable Energy, Elsevier, vol. 88(C), pages 273-279.
    5. Cirne, D.G. & Paloumet, X. & Björnsson, L. & Alves, M.M. & Mattiasson, B., 2007. "Anaerobic digestion of lipid-rich waste—Effects of lipid concentration," Renewable Energy, Elsevier, vol. 32(6), pages 965-975.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Haixia & Shao, Zongping, 2022. "Synergistic effects between solid potato waste and waste activated sludge for waste-to-power conversion in microbial fuel cells," Applied Energy, Elsevier, vol. 314(C).
    2. De Coster, Jonas & Liu, Jia & Van den Broeck, Rob & Rossi, Barbara & Dewil, Raf & Appels, Lise, 2020. "Influence of electrochemical advanced oxidation on the long-term operation of an Upflow Anaerobic Sludge Blanket (UASB) reactor treating 4-chlorophenol containing wastewater," Renewable Energy, Elsevier, vol. 159(C), pages 683-692.
    3. Al Afif, Rafat & Linke, Bernd, 2019. "Biogas production from three-phase olive mill solid waste in lab-scale continuously stirred tank reactor," Energy, Elsevier, vol. 171(C), pages 1046-1052.
    4. Zhen, Guangyin & Pan, Yang & Lu, Xueqin & Li, Yu-You & Zhang, Zhongyi & Niu, Chengxin & Kumar, Gopalakrishnan & Kobayashi, Takuro & Zhao, Youcai & Xu, Kaiqin, 2019. "Anaerobic membrane bioreactor towards biowaste biorefinery and chemical energy harvest: Recent progress, membrane fouling and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Yong Hu & Haiyuan Ma & Jiang Wu & Takuro Kobayashi & Kai-Qin Xu, 2022. "Performance Comparison of CSTR and CSFBR in Anaerobic Co-Digestion of Food Waste with Grease Trap Waste," Energies, MDPI, vol. 15(23), pages 1-11, November.
    6. Bedoić, Robert & Špehar, Ana & Puljko, Josip & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2020. "Opportunities and challenges: Experimental and kinetic analysis of anaerobic co-digestion of food waste and rendering industry streams for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    7. A. Sinan Akturk & Goksel N. Demirer, 2020. "Improved Food Waste Stabilization and Valorization by Anaerobic Digestion Through Supplementation of Conductive Materials and Trace Elements," Sustainability, MDPI, vol. 12(12), pages 1-11, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    2. Ma, Chaonan & Liu, Jianyong & Ye, Min & Zou, Lianpei & Qian, Guangren & Li, Yu-You, 2018. "Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 700-709.
    3. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Zarkadas, I. & Dontis, G. & Pilidis, G. & Sarigiannis, D.A., 2016. "Exploring the potential of fur farming wastes and byproducts as substrates to anaerobic digestion process," Renewable Energy, Elsevier, vol. 96(PB), pages 1063-1070.
    5. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Xu, Fuqing & Okopi, Solomon Inalegwu & Jiang, Yongmei & Chen, Zhou & Meng, Liyun & Li, Yebo & Sun, Weimin & Li, Chaokun, 2022. "Multi-criteria assessment of food waste and waste paper anaerobic co-digestion: Effects of inoculation ratio, total solids content, and feedstock composition," Renewable Energy, Elsevier, vol. 194(C), pages 40-50.
    7. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin, 2016. "Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste," Applied Energy, Elsevier, vol. 172(C), pages 47-58.
    8. Bolen, T.J. & Hasan, Mahmudul & Conway, Timothy & Stéphane Yaméogo, Djigui David & Sanchez, Pablo & Rahman, Arifur & Azam, Hossain, 2022. "Feasibility assessment of biogas production from the anaerobic co-digestion of cheese whey, grease interceptor waste and pulped food waste for WRRF," Energy, Elsevier, vol. 254(PA).
    9. Srisowmeya, G. & Chakravarthy, M. & Nandhini Devi, G., 2020. "Critical considerations in two-stage anaerobic digestion of food waste – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Zhang, Jingxin & Loh, Kai-Chee & Li, Wangliang & Lim, Jun Wei & Dai, Yanjun & Tong, Yen Wah, 2017. "Three-stage anaerobic digester for food waste," Applied Energy, Elsevier, vol. 194(C), pages 287-295.
    11. Sánchez-Bayo, Alejandra & López-Chicharro, Daniel & Morales, Victoria & Espada, Juan José & Puyol, Daniel & Martínez, Fernando & Astals, Sergi & Vicente, Gemma & Bautista, Luis Fernando & Rodríguez, R, 2020. "Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach," Renewable Energy, Elsevier, vol. 146(C), pages 188-195.
    12. Sarto, Sarto & Hildayati, Raudati & Syaichurrozi, Iqbal, 2019. "Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics," Renewable Energy, Elsevier, vol. 132(C), pages 335-350.
    13. Sayedin, Farid & Kermanshahi-pour, Azadeh & He, Quan Sophia, 2019. "Evaluating the potential of a novel anaerobic baffled reactor for anaerobic digestion of thin stillage: Effect of organic loading rate, hydraulic retention time and recycle ratio," Renewable Energy, Elsevier, vol. 135(C), pages 975-983.
    14. Abhinav Choudhury & Stephanie Lansing, 2019. "Methane and Hydrogen Sulfide Production from Co-Digestion of Gummy Waste with a Food Waste, Grease Waste, and Dairy Manure Mixture," Energies, MDPI, vol. 12(23), pages 1-12, November.
    15. Senghor, A. & Dioh, R.M.N. & Müller, C. & Youm, I., 2017. "Cereal crops for biogas production: A review of possible impact of elevated CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 548-554.
    16. Agnieszka A. Pilarska & Tomasz Kulupa & Adrianna Kubiak & Agnieszka Wolna-Maruwka & Krzysztof Pilarski & Alicja Niewiadomska, 2023. "Anaerobic Digestion of Food Waste—A Short Review," Energies, MDPI, vol. 16(15), pages 1-23, August.
    17. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    18. A. Sinan Akturk & Goksel N. Demirer, 2020. "Improved Food Waste Stabilization and Valorization by Anaerobic Digestion Through Supplementation of Conductive Materials and Trace Elements," Sustainability, MDPI, vol. 12(12), pages 1-11, June.
    19. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
    20. Su, Xing & Shao, Xiaolu & Geng, Yining & Tian, Shaochen & Huang, Yixiang, 2022. "Optimization of feedstock and insulating strategies to enhance biogas production of solar-assisted biodigester system," Renewable Energy, Elsevier, vol. 197(C), pages 59-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:124:y:2018:i:c:p:129-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.