IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8929-d984393.html
   My bibliography  Save this article

Performance Comparison of CSTR and CSFBR in Anaerobic Co-Digestion of Food Waste with Grease Trap Waste

Author

Listed:
  • Yong Hu

    (School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
    Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Ibaraki, Japan)

  • Haiyuan Ma

    (Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Ibaraki, Japan
    College of Environment and Ecology, Chongqing University, Chongqing 400045, China)

  • Jiang Wu

    (Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Ibaraki, Japan)

  • Takuro Kobayashi

    (Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Ibaraki, Japan)

  • Kai-Qin Xu

    (Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Ibaraki, Japan
    College of Civil Engineering, Fuzhou University, Fuzhou 350108, China)

Abstract

In this study, a newly established bench-scale thermophilic continuously stirred fluidized bed reactor (CSFBR) was applied for anaerobic co-digestion of food waste (FW) with grease trap waste (GTW). The performance of CSFBR regarding stability and treatment efficiency was inspected through a laboratory contrast experiment with two traditional continuous stirred tank reactors (CSTRs). In the OLR range of 3.19–7.41 g COD/L/d, the methane production rate of the thermophilic CSFBR was about as high as that of the thermophilic CSTR. Nevertheless, the thermophilic CSFBR had much lower VFAs (<1000 mg/L) and LCFA concentrations (<100 mg/L) as compared with the thermophilic CSTR. Unlike the mesophilic CSTR, there was no foaming that occurred in the CSFBR during the whole experimental period. The results all suggested that CSFBR simultaneously provided high treatment capacity and process stability in anaerobic digestion with high-lipid loading.

Suggested Citation

  • Yong Hu & Haiyuan Ma & Jiang Wu & Takuro Kobayashi & Kai-Qin Xu, 2022. "Performance Comparison of CSTR and CSFBR in Anaerobic Co-Digestion of Food Waste with Grease Trap Waste," Energies, MDPI, vol. 15(23), pages 1-11, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8929-:d:984393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8929/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8929/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tian, Guangliang & Yang, Bin & Dong, Minghua & Zhu, Rui & Yin, Fang & Zhao, Xingling & Wang, Yongxia & Xiao, Wei & Wang, Qiang & Zhang, Wudi & Cui, Xiaolong, 2018. "The effect of temperature on the microbial communities of peak biogas production in batch biogas reactors," Renewable Energy, Elsevier, vol. 123(C), pages 15-25.
    2. Camilo Wilches & Maik Vaske & Kilian Hartmann & Michael Nelles, 2019. "Representative Sampling Implementation in Online VFA/TIC Monitoring for Anaerobic Digestion," Energies, MDPI, vol. 12(6), pages 1-18, March.
    3. Shakourifar, Niloofar & Krisa, David & Eskicioglu, Cigdem, 2020. "Anaerobic co-digestion of municipal waste sludge with grease trap waste mixture: Point of process failure determination," Renewable Energy, Elsevier, vol. 154(C), pages 117-127.
    4. Chan, Pak Chuen & de Toledo, Renata Alves & Shim, Hojae, 2018. "Anaerobic co-digestion of food waste and domestic wastewater – Effect of intermittent feeding on short and long chain fatty acids accumulation," Renewable Energy, Elsevier, vol. 124(C), pages 129-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang Li & Yang Yang & Chen-Shun Lu & Takuro Kobayashi & Zhe Kong & Yong Hu, 2023. "Oleate Impacts on Acetoclastic and Hydrogenotrophic Methanogenesis under Mesophilic and Thermophilic Conditions," IJERPH, MDPI, vol. 20(4), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jianfeng & Tang, Zhengkang & Wang, Changmei & Wu, Kai & Song, Yuanlin & Wang, Xingping & Zhang, Zhiwen & Zhao, Xingling & Yang, Bin & Piao, Mingguo & Yin, Fang & Zhang, Wudi, 2021. "Novel technique for sustainable utilisation of water hyacinth using EGSB and MCSTR: Control overgrowth, energy recovery, and microbial metabolic mechanism," Renewable Energy, Elsevier, vol. 163(C), pages 1701-1710.
    2. A. Sinan Akturk & Goksel N. Demirer, 2020. "Improved Food Waste Stabilization and Valorization by Anaerobic Digestion Through Supplementation of Conductive Materials and Trace Elements," Sustainability, MDPI, vol. 12(12), pages 1-11, June.
    3. Diamantis, Vasileios & Eftaxias, Alexandros & Stamatelatou, Katerina & Noutsopoulos, Constantinos & Vlachokostas, Christos & Aivasidis, Alexandros, 2021. "Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes," Renewable Energy, Elsevier, vol. 168(C), pages 438-447.
    4. Kumar, Pankaj & Kumar, Vinod & Singh, Jogendra & Kumar, Piyush, 2021. "Electrokinetic assisted anaerobic digestion of spent mushroom substrate supplemented with sugar mill wastewater for enhanced biogas production," Renewable Energy, Elsevier, vol. 179(C), pages 418-426.
    5. Grosser, A. & Neczaj, E. & Jasinska, Anna & Celary, P., 2020. "The influence of grease trap sludge sterilization on the performance of anaerobic co-digestion of sewage sludge," Renewable Energy, Elsevier, vol. 161(C), pages 988-997.
    6. KeChrist Obileke & Nwabunwanne Nwokolo & Golden Makaka & Patrick Mukumba & Helen Onyeaka, 2021. "Anaerobic digestion: Technology for biogas production as a source of renewable energy—A review," Energy & Environment, , vol. 32(2), pages 191-225, March.
    7. Zhen, Guangyin & Pan, Yang & Lu, Xueqin & Li, Yu-You & Zhang, Zhongyi & Niu, Chengxin & Kumar, Gopalakrishnan & Kobayashi, Takuro & Zhao, Youcai & Xu, Kaiqin, 2019. "Anaerobic membrane bioreactor towards biowaste biorefinery and chemical energy harvest: Recent progress, membrane fouling and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Du, Haixia & Shao, Zongping, 2022. "Synergistic effects between solid potato waste and waste activated sludge for waste-to-power conversion in microbial fuel cells," Applied Energy, Elsevier, vol. 314(C).
    9. Pan, Xiaoli & Wang, Yuxuan & Xie, Haiyin & Wang, Hui & Liu, Lei & Du, Hongxia & Imanaka, Tadayuki & Igarashia, Yasuo & Luo, Feng, 2022. "Performance on a novel rotating bioreactor for dry anaerobic digestion: Efficiency and biological mechanism compared with wet fermentation," Energy, Elsevier, vol. 254(PB).
    10. Akindolire, Muyiwa Ajoke & Rama, Haripriya & Roopnarain, Ashira, 2022. "Psychrophilic anaerobic digestion: A critical evaluation of microorganisms and enzymes to drive the process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Al Afif, Rafat & Linke, Bernd, 2019. "Biogas production from three-phase olive mill solid waste in lab-scale continuously stirred tank reactor," Energy, Elsevier, vol. 171(C), pages 1046-1052.
    13. Nie, Erqi & He, Pinjing & Zhang, Hua & Hao, Liping & Shao, Liming & Lü, Fan, 2021. "How does temperature regulate anaerobic digestion?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. De Coster, Jonas & Liu, Jia & Van den Broeck, Rob & Rossi, Barbara & Dewil, Raf & Appels, Lise, 2020. "Influence of electrochemical advanced oxidation on the long-term operation of an Upflow Anaerobic Sludge Blanket (UASB) reactor treating 4-chlorophenol containing wastewater," Renewable Energy, Elsevier, vol. 159(C), pages 683-692.
    15. Nabaterega, Resty & Kieft, Brandon & Hallam, Steven J. & Eskicioglu, Cigdem, 2022. "Fractional factorial experimental design for optimizing volatile fatty acids from anaerobic fermentation of municipal sludge: Microbial community and activity investigation," Renewable Energy, Elsevier, vol. 199(C), pages 733-744.
    16. Bi, Shaojie & Qiao, Wei & Xiong, Linpeng & Ricci, Marina & Adani, Fabrizio & Dong, Renjie, 2019. "Effects of organic loading rate on anaerobic digestion of chicken manure under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 139(C), pages 242-250.
    17. Bedoić, Robert & Špehar, Ana & Puljko, Josip & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2020. "Opportunities and challenges: Experimental and kinetic analysis of anaerobic co-digestion of food waste and rendering industry streams for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    18. Kang, Dongho & Saha, Shouvik & Kurade, Mayur B. & Basak, Bikram & Ha, Geon-Soo & Jeon, Byong-Hun & Lee, Sean S. & Kim, Jung Rae, 2021. "Dual-stage pulse-feed operation enhanced methanation of lipidic waste during co-digestion using acclimatized consortia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8929-:d:984393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.