IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v115y2019ics1364032119306008.html
   My bibliography  Save this article

Anaerobic membrane bioreactor towards biowaste biorefinery and chemical energy harvest: Recent progress, membrane fouling and future perspectives

Author

Listed:
  • Zhen, Guangyin
  • Pan, Yang
  • Lu, Xueqin
  • Li, Yu-You
  • Zhang, Zhongyi
  • Niu, Chengxin
  • Kumar, Gopalakrishnan
  • Kobayashi, Takuro
  • Zhao, Youcai
  • Xu, Kaiqin

Abstract

Anaerobic membrane bioreactor (AnMBR) holds great promise to treat a broad range of waste streams for concurrent pollutants transformation and biofuels harvest while producing less digestate residuals. In this review, recent research advances, new discoveries and commercial application status of AnMBR technique were summarized and reported. A comprehensive comparison analysis designed herein demonstrated its fascinating superiorities over the conventional activated sludge-based processes with regards to good permeate quality, less digestate residuals, low operational costs, net profit/energy output, and outstanding economic and environmental benefits. Despite the great progress achieved previously, there are still numerous challenges head for AnMBR platform applications to be tackled, particularly for severe membrane fouling, low methane content in biogas, highly dissolved methane, poor ammonia removal and phosphorus recovery, etc. To address the above problems, a new-generation process, i.e. so-called “Integrated Multistage Bio-Process (IMBP)” constituted of solar-driven bioelectrochemical system (BES)-AnMBR, partial nitritation/anammox (PN/A), nitrate reduction via anaerobic oxidation of methane (AOM) and biological/chemical phosphorus precipitation units, was proposed in this article, with versatile capabilities in simultaneous biowastes valorization, CO2 electromethanogenesis and simultaneous biogas upgrading, in-situ fouling control, ammonia removal, dissolved methane reutilization, and phosphorus recover as hydroxyapatite-rich nutrients. Despite the uncertainties about whether this approach possesses the powerful potential to dominate the future, but most surely, this hybrid concept will enhance the deployment and industrial competitiveness of AnMBR-based technologies in real-world scenarios, facilitating the establishment of the energy-sustainable and low-carbon society. Of course, more efforts are still required to demonstrate the feasibility of this integrated biorefinery approach. Nonetheless, this review opens up new research opportunities to integrate with other newly emerging processes to develop robust, multifunctional and sustainable AnMBR-based technologies towards biowaste biorefinery, chemical energy harvest and green, carbon-neutral society.

Suggested Citation

  • Zhen, Guangyin & Pan, Yang & Lu, Xueqin & Li, Yu-You & Zhang, Zhongyi & Niu, Chengxin & Kumar, Gopalakrishnan & Kobayashi, Takuro & Zhao, Youcai & Xu, Kaiqin, 2019. "Anaerobic membrane bioreactor towards biowaste biorefinery and chemical energy harvest: Recent progress, membrane fouling and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
  • Handle: RePEc:eee:rensus:v:115:y:2019:i:c:s1364032119306008
    DOI: 10.1016/j.rser.2019.109392
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119306008
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109392?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wandera, Simon M. & Qiao, Wei & Jiang, Mengmeng & Gapani, Dalal E. & Bi, Shaojie & Dong, Renjie, 2018. "AnMBR as alternative to conventional CSTR to achieve efficient methane production from thermal hydrolyzed sludge at short HRTs," Energy, Elsevier, vol. 159(C), pages 588-598.
    2. Zhen, Guangyin & Lu, Xueqin & Kato, Hiroyuki & Zhao, Youcai & Li, Yu-You, 2017. "Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 559-577.
    3. Kumar, Gopalakrishnan & Bakonyi, Péter & Zhen, Guangyin & Sivagurunathan, Periyasamy & Koók, László & Kim, Sang-Hyoun & Tóth, Gábor & Nemestóthy, Nándor & Bélafi-Bakó, Katalin, 2017. "Microbial electrochemical systems for sustainable biohydrogen production: Surveying the experiences from a start-up viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 589-597.
    4. Zhiyong Jason Ren & Art K. Umble, 2016. "Recover wastewater resources locally," Nature, Nature, vol. 529(7584), pages 25-25, January.
    5. Zhen, Guangyin & Lu, Xueqin & Li, Yu-You & Zhao, Youcai, 2014. "Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion," Applied Energy, Elsevier, vol. 128(C), pages 93-102.
    6. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Jeon, Jong-Min & Kumar, Gopalakrishnan & Yang, Yung-Hun, 2019. "Carbon dioxide capture and bioenergy production using biological system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 143-158.
    7. Mao, Chunlan & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2015. "Review on research achievements of biogas from anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 540-555.
    8. Chan, Pak Chuen & de Toledo, Renata Alves & Shim, Hojae, 2018. "Anaerobic co-digestion of food waste and domestic wastewater – Effect of intermittent feeding on short and long chain fatty acids accumulation," Renewable Energy, Elsevier, vol. 124(C), pages 129-135.
    9. Zhiyong Jason Ren, 2017. "Microbial fuel cells: Running on gas," Nature Energy, Nature, vol. 2(6), pages 1-2, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Bao-Cheng & He, Chuan-Shu & Fan, Nian-Si & Jin, Ren-Cun & Yu, Han-Qing, 2020. "Envisaging wastewater-to-energy practices for sustainable urban water pollution control: Current achievements and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Vinardell, S. & Astals, S. & Peces, M. & Cardete, M.A. & Fernández, I. & Mata-Alvarez, J. & Dosta, J., 2020. "Advances in anaerobic membrane bioreactor technology for municipal wastewater treatment: A 2020 updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    3. Ennaceri, Houda & Fischer, Kristina & Schulze, Agnes & Moheimani, Navid Reza, 2022. "Membrane fouling control for sustainable microalgal biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Sergi Vinardell & Gaetan Blandin & Federico Ferrari & Geoffroy Lesage & Joan Mata-Alvarez & Joan Dosta & Sergi Astals, 2022. "Techno-economic analysis of forward osmosis pre-concentration before an anaerobic membrane bioreactor: Impact of draw solute and membrane material," Post-Print hal-03709623, HAL.
    5. Huang, Bao-Cheng & Lu, Yan & Li, Wen-Wei, 2020. "Exploiting the energy potential of municipal wastewater in China by incorporating tailored anaerobic treatment processes," Renewable Energy, Elsevier, vol. 158(C), pages 534-540.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hui & Zeng, Shufang & Pan, Xiaoli & Liu, Lei & Chen, Yunjie & Tang, Jiawei & Luo, Feng, 2022. "Bioelectrochemically assisting anaerobic digestion enhanced methane production under low-temperature," Renewable Energy, Elsevier, vol. 194(C), pages 1071-1083.
    2. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    3. Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    4. Brémond, Ulysse & de Buyer, Raphaëlle & Steyer, Jean-Philippe & Bernet, Nicolas & Carrere, Hélène, 2018. "Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 583-604.
    5. Hosseini Koupaie, E. & Lin, L. & Bazyar Lakeh, A.A. & Azizi, A. & Dhar, B.R. & Hafez, H. & Elbeshbishy, E., 2021. "Performance evaluation and microbial community analysis of mesophilic and thermophilic sludge fermentation processes coupled with thermal hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Kasinath, Archana & Fudala-Ksiazek, Sylwia & Szopinska, Malgorzata & Bylinski, Hubert & Artichowicz, Wojciech & Remiszewska-Skwarek, Anna & Luczkiewicz, Aneta, 2021. "Biomass in biogas production: Pretreatment and codigestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Hwijin Seo & Anna Joicy & Myoung Eun Lee & Chaeyoung Rhee & Seung Gu Shin & Si-Kyung Cho & Yongtae Ahn, 2023. "Development of a Primary Sewage Sludge Pretreatment Strategy Using a Combined Alkaline–Ultrasound Pretreatment for Enhancing Microbial Electrolysis Cell Performance," Energies, MDPI, vol. 16(10), pages 1-14, May.
    8. Ma, Chaonan & Liu, Jianyong & Ye, Min & Zou, Lianpei & Qian, Guangren & Li, Yu-You, 2018. "Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 700-709.
    9. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Lu Liu & Jun Zhang & Yifan Chen & Ze Guo & Ganzhan Xu & Linlin Yin & Yu Tian & Stevo Lavrnić, 2023. "Anaerobic Fluidized-Bed Membrane Bioreactor for Treatment of Liquid Fraction of Sludge Digestate: Performance and Agricultural Reuse Analysis," Sustainability, MDPI, vol. 15(9), pages 1-17, May.
    11. Stanisław Wacławek & Klaudiusz Grübel & Daniele Silvestri & Vinod V. T. Padil & Maria Wacławek & Miroslav Černík & Rajender S. Varma, 2018. "Disintegration of Wastewater Activated Sludge (WAS) for Improved Biogas Production," Energies, MDPI, vol. 12(1), pages 1-15, December.
    12. Alejandro Moure Abelenda & Kirk T. Semple & George Aggidis & Farid Aiouache, 2022. "Circularity of Bioenergy Residues: Acidification of Anaerobic Digestate Prior to Addition of Wood Ash," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    13. Amar Naji & Sabrina Guérin Rechdaoui & Elise Jabagi & Carlyne Lacroix & Sam Azimi & Vincent Rocher, 2023. "Pilot-Scale Anaerobic Co-Digestion of Wastewater Sludge with Lignocellulosic Waste: A Study of Performance and Limits," Energies, MDPI, vol. 16(18), pages 1-13, September.
    14. Arshad, Muhammad & Bano, Ijaz & Khan, Nasrullah & Shahzad, Mirza Imran & Younus, Muhammad & Abbas, Mazhar & Iqbal, Munawar, 2018. "Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1241-1246.
    15. Zhen, Guangyin & Lu, Xueqin & Kato, Hiroyuki & Zhao, Youcai & Li, Yu-You, 2017. "Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 559-577.
    16. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    17. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    18. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    19. Capson-Tojo, G. & Moscoviz, R. & Astals, S. & Robles, Á. & Steyer, J.-P., 2020. "Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    20. Justyna Górka & Małgorzata Cimochowicz-Rybicka & Dominika Poproch, 2022. "Sludge Management at the Kraków-Płaszów WWTP—Case Study," Sustainability, MDPI, vol. 14(13), pages 1-11, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:115:y:2019:i:c:s1364032119306008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.