IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v158y2020icp534-540.html
   My bibliography  Save this article

Exploiting the energy potential of municipal wastewater in China by incorporating tailored anaerobic treatment processes

Author

Listed:
  • Huang, Bao-Cheng
  • Lu, Yan
  • Li, Wen-Wei

Abstract

Anaerobic biotechnologies bring opportunities for energy-productive wastewater treatment processes, but the energy performances of such processes vary drastically depending on the wastewater characteristics and operating conditions. So far, anaerobic digestion (AD)-based wastewater treatment processes have been seldom applied in China due to the often unfavorable wastewater properties and suboptimal operation performances. In this study, we propose a new paradigm to achieve sustainable wastewater treatment in China by customizing the AD technologies based on the organic carbon levels in wastewater. The suitability of several AD processes for specific plants was evaluated based on the plant-resolved wastewater data, and the energy recovery potential of the entire municipal wastewater sector in China was estimated. Under optimal scenario (both organic carbon and nutrient removal are taken into account), a net energy production of 3.41 billion kWh from wastewater may be achieved in China. The process of high rate activated sludge plus sludge AD is suggested as the most desirable process (with low biogas recovery cost) for 93% of plants. This work may provide guidance for enforcing energy-sustainable wastewater management in China and may also have implications for the wastewater sectors in other developing countries.

Suggested Citation

  • Huang, Bao-Cheng & Lu, Yan & Li, Wen-Wei, 2020. "Exploiting the energy potential of municipal wastewater in China by incorporating tailored anaerobic treatment processes," Renewable Energy, Elsevier, vol. 158(C), pages 534-540.
  • Handle: RePEc:eee:renene:v:158:y:2020:i:c:p:534-540
    DOI: 10.1016/j.renene.2020.05.157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120308624
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Gang & Wang, Wen & Angelidaki, Irini, 2014. "A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent," Applied Energy, Elsevier, vol. 132(C), pages 536-542.
    2. Elalami, D. & Carrere, H. & Monlau, F. & Abdelouahdi, K. & Oukarroum, A. & Barakat, A., 2019. "Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Zhen, Guangyin & Pan, Yang & Lu, Xueqin & Li, Yu-You & Zhang, Zhongyi & Niu, Chengxin & Kumar, Gopalakrishnan & Kobayashi, Takuro & Zhao, Youcai & Xu, Kaiqin, 2019. "Anaerobic membrane bioreactor towards biowaste biorefinery and chemical energy harvest: Recent progress, membrane fouling and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Di Maria, Francesco & Micale, Caterina & Contini, Stefano, 2016. "Energetic and environmental sustainability of the co-digestion of sludge with bio-waste in a life cycle perspective," Applied Energy, Elsevier, vol. 171(C), pages 67-76.
    5. Baek, Gahyun & Kim, Jinsu & Lee, Changsoo, 2019. "A review of the effects of iron compounds on methanogenesis in anaerobic environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Moreno, R. & San-Martín, M.I. & Escapa, A. & Morán, A., 2016. "Domestic wastewater treatment in parallel with methane production in a microbial electrolysis cell," Renewable Energy, Elsevier, vol. 93(C), pages 442-448.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Runxi & Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin, 2021. "Optimizing the recovery pathway of a net-zero energy wastewater treatment model by balancing energy recovery and eco-efficiency," Applied Energy, Elsevier, vol. 298(C).
    2. Huang, Bao-Cheng & He, Chuan-Shu & Fan, Nian-Si & Jin, Ren-Cun & Yu, Han-Qing, 2020. "Envisaging wastewater-to-energy practices for sustainable urban water pollution control: Current achievements and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Xiong, Yu-Tong & Zhang, Jing & Chen, You-Peng & Guo, Jin-Song & Fang, Fang & Yan, Peng, 2021. "Geographic distribution of net-zero energy wastewater treatment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Justyna Górka & Małgorzata Cimochowicz-Rybicka & Dominika Poproch, 2022. "Sludge Management at the Kraków-Płaszów WWTP—Case Study," Sustainability, MDPI, vol. 14(13), pages 1-11, June.
    2. Yapeng Song & Wei Qiao & Jiahao Zhang & Renjie Dong, 2023. "Process Performance and Functional Microbial Community in the Anaerobic Digestion of Chicken Manure: A Review," Energies, MDPI, vol. 16(12), pages 1-22, June.
    3. Huang, Bao-Cheng & He, Chuan-Shu & Fan, Nian-Si & Jin, Ren-Cun & Yu, Han-Qing, 2020. "Envisaging wastewater-to-energy practices for sustainable urban water pollution control: Current achievements and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    5. Huang, Bao-Cheng & Li, Wen-Wei & Wang, Xu & Lu, Yan & Yu, Han-Qing, 2019. "Customizing anaerobic digestion-coupled processes for energy-positive and sustainable treatment of municipal wastewater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 132-142.
    6. Ennaceri, Houda & Fischer, Kristina & Schulze, Agnes & Moheimani, Navid Reza, 2022. "Membrane fouling control for sustainable microalgal biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Di Maria, Francesco & Sisani, Federico & Lasagni, Marzio & Borges, Marisa Soares & Gonzales, Thiago H., 2018. "Replacement of energy crops with bio-waste in existing anaerobic digestion plants: An energetic and environmental analysis," Energy, Elsevier, vol. 152(C), pages 202-213.
    8. Christine Peyrelasse & Abdellatif Barakat & Camille Lagnet & Prasad Kaparaju & Florian Monlau, 2021. "Anaerobic Digestion of Wastewater Sludge and Alkaline-Pretreated Wheat Straw at Semi-Continuous Pilot Scale: Performances and Energy Assessment," Energies, MDPI, vol. 14(17), pages 1-15, August.
    9. Gérard Merlin & Jonathan Outin & Hervé Boileau, 2021. "Co-Digestion of Extended Aeration Sewage Sludge with Whey, Grease and Septage: Experimental and Modeling Determination," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    10. Macintosh, C. & Astals, S. & Sembera, C. & Ertl, A. & Drewes, J.E. & Jensen, P.D. & Koch, K., 2019. "Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration," Applied Energy, Elsevier, vol. 242(C), pages 797-808.
    11. Vinardell, S. & Astals, S. & Peces, M. & Cardete, M.A. & Fernández, I. & Mata-Alvarez, J. & Dosta, J., 2020. "Advances in anaerobic membrane bioreactor technology for municipal wastewater treatment: A 2020 updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    12. Kasinath, Archana & Byliński, Hubert & Artichowicz, Wojciech & Remiszewska –Skwarek, Anna & Szopińska, Małgorzata & Zaborowska, Ewa & Luczkiewicz, Aneta & Fudala –Ksiazek, Sylwia, 2023. "Biochemical assays of intensified methane content in biogas from low-temperature processing of waste activated sludge," Energy, Elsevier, vol. 282(C).
    13. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    14. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Wang, Fei & Fu, Shanfei & Guo, Gang & Jia, Zhen-Zhen & Luo, Sheng-Jun & Guo, Rong-Bo, 2016. "Experimental study on hydrate-based CO2 removal from CH4/CO2 mixture," Energy, Elsevier, vol. 104(C), pages 76-84.
    16. Ramprakash, Balasubramani & Lindblad, Peter & Eaton-Rye, Julian J. & Incharoensakdi, Aran, 2022. "Current strategies and future perspectives in biological hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Lam, Chor Man & Hsu, Shu-Chien & Alvarado, Valeria & Li, Wing Man, 2020. "Integrated life-cycle data envelopment analysis for techno-environmental performance evaluation on sludge-to-energy systems," Applied Energy, Elsevier, vol. 266(C).
    18. Manuel García & Paula Oulego & Mario Díaz & Sergio Collado, 2021. "Non-Energetic Chemical Products by Fermentation of Hydrolyzed Sewage Sludge," Sustainability, MDPI, vol. 13(10), pages 1-37, May.
    19. Yan, Cheng & Zhu, Liandong & Wang, Yanxin, 2016. "Photosynthetic CO2 uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities,," Applied Energy, Elsevier, vol. 178(C), pages 9-18.
    20. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2021. "A Review of the State of the Art of Biomethane Production: Recent Advancements and Integration of Renewable Energies," Energies, MDPI, vol. 14(16), pages 1-43, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:158:y:2020:i:c:p:534-540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.