IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v298y2021ics0306261921005924.html
   My bibliography  Save this article

Optimizing the recovery pathway of a net-zero energy wastewater treatment model by balancing energy recovery and eco-efficiency

Author

Listed:
  • Liu, Runxi
  • Huang, Runyao
  • Shen, Ziheng
  • Wang, Hongtao
  • Xu, Jin

Abstract

As more countries commit to carbon neutrality, the concept of carbon-neutral or energy self-sufficient wastewater treatment plants (WWTPs) is attracting more attention. Optimizing energy recovery evaluation from both economic and ecological perspectives contributes to promoting this concept into practice. In this study, the energy recovery and eco-efficiency balance in a WWTP in China with the weekly operating status as the decision-making unit was explored. In addition to the chemical energy recovered by anaerobic digestion with combined heat and power (CHP), the thermal energy in wastewater and solar energy can be recovered through the heat pump (HP) and photovoltaic (PV) modules and form optimal pathways in the net-zero energy wastewater treatment model. Additionally, with three inputs and seven outputs covering both economic and ecological indicators, a slacks-based measure in data envelopment analysis was conducted to evaluate eco-efficiency. The results show that the water quantity of WWTPs can be influenced by seasonal variations, causing low eco-efficiency in summer; for water quality, carbon source shortages can hinder the efficiency. The most efficient performance was achieved under tech-portfolios of CHP + PV or CHP + PV + HP. The eco-efficiency distribution exhibited a similar normal distribution to energy recovery, with optimal eco-efficiency achieved at energy recovery rates of 85–90%. With further improvements in energy recovery, the marginal benefit of the energy yield decreased. This study provides optimized energy recovery pathways in WWTPs by balancing energy recovery and eco-efficiency, which is significant for planning technical renovation in WWTPs for energy recovery.

Suggested Citation

  • Liu, Runxi & Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin, 2021. "Optimizing the recovery pathway of a net-zero energy wastewater treatment model by balancing energy recovery and eco-efficiency," Applied Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921005924
    DOI: 10.1016/j.apenergy.2021.117157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921005924
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Otsu, Taisuke & Taniguchi, Go, 2020. "Kolmogorov–Smirnov type test for generated variables," Economics Letters, Elsevier, vol. 195(C).
    2. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.
    3. Cano, R. & Pérez-Elvira, S.I. & Fdz-Polanco, F., 2015. "Energy feasibility study of sludge pretreatments: A review," Applied Energy, Elsevier, vol. 149(C), pages 176-185.
    4. Yang, Junwen & Chen, Bin, 2021. "Energy efficiency evaluation of wastewater treatment plants (WWTPs) based on data envelopment analysis," Applied Energy, Elsevier, vol. 289(C).
    5. Lee, Mengshan & Keller, Arturo A. & Chiang, Pen-Chi & Den, Walter & Wang, Hongtao & Hou, Chia-Hung & Wu, Jiang & Wang, Xin & Yan, Jinyue, 2017. "Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks," Applied Energy, Elsevier, vol. 205(C), pages 589-601.
    6. Huang, Bao-Cheng & Lu, Yan & Li, Wen-Wei, 2020. "Exploiting the energy potential of municipal wastewater in China by incorporating tailored anaerobic treatment processes," Renewable Energy, Elsevier, vol. 158(C), pages 534-540.
    7. Cao, Yucheng & Pawłowski, Artur, 2012. "Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1657-1665.
    8. Luo, Li & Dzakpasu, Mawuli & Yang, Baichuan & Zhang, Wushou & Yang, Yahong & Wang, Xiaochang C., 2019. "A novel index of total oxygen demand for the comprehensive evaluation of energy consumption for urban wastewater treatment," Applied Energy, Elsevier, vol. 236(C), pages 253-261.
    9. Longo, S. & Mauricio-Iglesias, M. & Soares, A. & Campo, P. & Fatone, F. & Eusebi, A.L. & Akkersdijk, E. & Stefani, L. & Hospido, A., 2019. "ENERWATER – A standard method for assessing and improving the energy efficiency of wastewater treatment plants," Applied Energy, Elsevier, vol. 242(C), pages 897-910.
    10. Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Colmenar-Santos, Antonio & Zarzuelo-Puch, Gloria & Borge-Diez, David & García-Diéguez, Concepción, 2016. "Thermodynamic and exergoeconomic analysis of energy recovery system of biogas from a wastewater treatment plant and use in a Stirling engine," Renewable Energy, Elsevier, vol. 88(C), pages 171-184.
    12. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    13. Zhu, Weiwei & Yu, Yu & Sun, Panpan, 2018. "Data envelopment analysis cross-like efficiency model for non-homogeneous decision-making units: The case of United States companies’ low-carbon investment to attain corporate sustainability," European Journal of Operational Research, Elsevier, vol. 269(1), pages 99-110.
    14. Ruffino, Barbara & Cerutti, Alberto & Campo, Giuseppe & Scibilia, Gerardo & Lorenzi, Eugenio & Zanetti, Mariachiara, 2020. "Thermophilic vs. mesophilic anaerobic digestion of waste activated sludge: Modelling and energy balance for its applicability at a full scale WWTP," Renewable Energy, Elsevier, vol. 156(C), pages 235-248.
    15. Bey, M. & Hamidat, A. & Nacer, T., 2021. "Eco-energetic feasibility study of using grid-connected photovoltaic system in wastewater treatment plant," Energy, Elsevier, vol. 216(C).
    16. Hughes, Andrew & Yaisawarng, Suthathip, 2004. "Sensitivity and dimensionality tests of DEA efficiency scores," European Journal of Operational Research, Elsevier, vol. 154(2), pages 410-422, April.
    17. Zeng, Siyu & Chen, Xing & Dong, Xin & Liu, Yi, 2017. "Efficiency assessment of urban wastewater treatment plants in China: Considering greenhouse gas emissions," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 157-165.
    18. Chae, Kyu-Jung & Ren, Xianghao, 2016. "Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system," Applied Energy, Elsevier, vol. 179(C), pages 565-574.
    19. Shen, Chao & Lei, Zhuoyu & Lv, Guoquan & Ni, Long & Deng, Shiming, 2019. "Experimental performance evaluation of a novel anti-fouling wastewater source heat pump system with a wastewater tower," Applied Energy, Elsevier, vol. 236(C), pages 690-699.
    20. Mao, Chunlan & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2015. "Review on research achievements of biogas from anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 540-555.
    21. Hosseini-Ardali, Seyed Mohsen & Hazrati-Kalbibaki, Majid & Fattahi, Moslem & Lezsovits, Ferenc, 2020. "Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent," Energy, Elsevier, vol. 211(C).
    22. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    23. Charnes, A. & Cooper, W. W. & Rhodes, E., 1979. "Measuring the efficiency of decision-making units," European Journal of Operational Research, Elsevier, vol. 3(4), pages 339-338, July.
    24. Hakawati, Rawan & Smyth, Beatrice M. & McCullough, Geoffrey & De Rosa, Fabio & Rooney, David, 2017. "What is the most energy efficient route for biogas utilization: Heat, electricity or transport?," Applied Energy, Elsevier, vol. 206(C), pages 1076-1087.
    25. Manuel Mocholi-Arce & Trinidad Gómez & Maria Molinos-Senante & Ramon Sala-Garrido & Rafael Caballero, 2020. "Evaluating the Eco-Efficiency of Wastewater Treatment Plants: Comparison of Optimistic and Pessimistic Approaches," Sustainability, MDPI, vol. 12(24), pages 1-13, December.
    26. Gude, Veera Gnaneswar, 2015. "Energy and water autarky of wastewater treatment and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 52-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahshad Modiri & Atiye Haj Hasan & Hamid Zafari koloukhi & Fatemeh Rostami & Seyyed Mohammad Tafazzoli & Akram Avami, 2023. "Assessment of water-energy-emissions nexus in wastewater treatment plants using emergy analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11905-11929, October.
    2. Liu, Lingchi & Zhang, Xiaohong & Lyu, Yanfeng, 2022. "Performance comparison of sewage treatment plants before and after their upgradation using emergy evaluation combined with economic analysis: A case from Southwest China," Ecological Modelling, Elsevier, vol. 472(C).
    3. Sabina Kordana-Obuch & Michał Wojtoń & Mariusz Starzec & Beata Piotrowska, 2023. "Opportunities and Challenges for Research on Heat Recovery from Wastewater: Bibliometric and Strategic Analyses," Energies, MDPI, vol. 16(17), pages 1-36, September.
    4. Misrol, Mohd Arif & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Manan, Zainuddin Abd, 2022. "Optimising renewable energy at the eco-industrial park: A mathematical modelling approach," Energy, Elsevier, vol. 261(PB).
    5. Kiani Mavi, Reza & Kiani Mavi, Neda & Farzipoor Saen, Reza & Goh, Mark, 2022. "Common weights analysis of renewable energy efficiency of OECD countries," Technological Forecasting and Social Change, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin & Ai, Zisheng & Zheng, Hongyuan & Liu, Runxi, 2021. "Evaluating the energy efficiency of wastewater treatment plants in the Yangtze River Delta: Perspectives on regional discrepancies," Applied Energy, Elsevier, vol. 297(C).
    2. Odabaş Baş, Gözde & Aydınalp Köksal, Merih, 2022. "Environmental and techno-economic analysis of the integration of biogas and solar power systems into urban wastewater treatment plants," Renewable Energy, Elsevier, vol. 196(C), pages 579-597.
    3. Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Carla Henriques & Clara Viseu, 2022. "Are ERDFs Devoted to Boosting ICTs in SMEs Inefficient? A Three-Stage SBM Approach," Sustainability, MDPI, vol. 14(17), pages 1-20, August.
    5. Xiong, Yu-Tong & Zhang, Jing & Chen, You-Peng & Guo, Jin-Song & Fang, Fang & Yan, Peng, 2021. "Geographic distribution of net-zero energy wastewater treatment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Zhu, Wenjing & Duan, Cuncun & Chen, Bin, 2024. "Energy efficiency assessment of wastewater treatment plants in China based on multiregional input–output analysis and data envelopment analysis," Applied Energy, Elsevier, vol. 356(C).
    7. Zhang, Weike & Meng, Jia & Tian, Xiaoli, 2020. "Does de-capacity policy enhance the total factor productivity of China's coal companies? A Regression Discontinuity design," Resources Policy, Elsevier, vol. 68(C).
    8. Avkiran, Necmi K., 2007. "Stability and integrity tests in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 41(3), pages 224-234, September.
    9. Kao, Chiang, 2022. "A maximum slacks-based measure of efficiency for closed series production systems," Omega, Elsevier, vol. 106(C).
    10. Kao, Chiang, 2022. "Closest targets in the slacks-based measure of efficiency for production units with multi-period data," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1042-1054.
    11. Molinos-Senante, María & Sala-Garrido, Ramón, 2018. "Evaluation of energy performance of drinking water treatment plants: Use of energy intensity and energy efficiency metrics," Applied Energy, Elsevier, vol. 229(C), pages 1095-1102.
    12. Chia-Nan Wang & Anh Luyen Le & Chu-Chieh Hou, 2019. "Applying Undesirable Output Model to Security Evaluation of Taiwan," Mathematics, MDPI, vol. 7(11), pages 1-15, October.
    13. Suvvari Anandarao & S. Raja Sethu Durai & Phanindra Goyari, 2019. "Efficiency Decomposition in two-stage Data Envelopment Analysis: An application to Life Insurance companies in India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 271-285, June.
    14. Ziyang Guo & Yongjun Sun & Shu-Yuan Pan & Pen-Chi Chiang, 2019. "Integration of Green Energy and Advanced Energy-Efficient Technologies for Municipal Wastewater Treatment Plants," IJERPH, MDPI, vol. 16(7), pages 1-29, April.
    15. Kao, Chiang & Liu, Shiang-Tai, 2022. "Group decision making in data envelopment analysis: A robot selection application," European Journal of Operational Research, Elsevier, vol. 297(2), pages 592-599.
    16. Subhash C. Ray, 2018. "Data Envelopment Analysis with Alternative Returns to Scale," Working papers 2018-20, University of Connecticut, Department of Economics.
    17. Golzar, Farzin & Silveira, Semida, 2021. "Impact of wastewater heat recovery in buildings on the performance of centralized energy recovery – A case study of Stockholm," Applied Energy, Elsevier, vol. 297(C).
    18. María Molinos-Senante & Ramón Sala-Garrido, 2019. "Assessment of Energy Efficiency and Its Determinants for Drinking Water Treatment Plants Using A Double-Bootstrap Approach," Energies, MDPI, vol. 12(4), pages 1-11, February.
    19. Jianguo Zhao & Lei Zhang, 2023. "Fiscal Expenditure Efficiency Measurement and Its Convergence Analysis on Aging Undertakings in China: Based on a Global Super-Efficiency Slacks-Based Measure Model," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    20. Bao Jiang & Enxin Chi & Jian Li, 2022. "Uncertain Data Envelopment Analysis for Cross Efficiency Evaluation with Imprecise Data," Mathematics, MDPI, vol. 10(13), pages 1-9, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921005924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.