IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6898-d661281.html
   My bibliography  Save this article

Biogas, Solar and Geothermal Energy—The Way to a Net-Zero Energy Wastewater Treatment Plant—A Case Study

Author

Listed:
  • Sylwia Myszograj

    (Institute of Environmental Engineering, University od Zielona Góra, 65-001 Zielona Góra, Poland)

  • Dariusz Bocheński

    (Wastewater Treatment Enterprise Gubin-Guben, 66-620 Gubin, Poland)

  • Mirosław Mąkowski

    (Comeko Sp. z o.o., 65-001 Zielona Góra, Poland)

  • Ewelina Płuciennik-Koropczuk

    (Institute of Environmental Engineering, University od Zielona Góra, 65-001 Zielona Góra, Poland)

Abstract

Wastewater treatment plants designed to meet the requirements of discharging wastewater to a receiving water body are often not energy optimised. Energy requirements for conventional activated sludge wastewater treatment plants are estimated to range from 0.30 to 1.2 kWh/m 3 , with the highest values achieved using the nitrification process. This article describes the energy optimisation process of the wastewater treatment plant in Gubin (Poland) designed for 90,000 PE (population equivalent) using renewable energy sources: solar, biogas, and geothermal. At the analysed wastewater treatment plant electricity consumption for treating 1 m 3 of wastewater was 0.679 kWh in 2020. The combined production of electricity and heat from biogas, the production of electricity in a photovoltaic system, and heat recovery in a geothermal process make it possible to obtain a surplus of heat in relation to its demand in the wastewater treatment plant, and to cover the demand for electricity, with the possibility of also selling it to the power grid.

Suggested Citation

  • Sylwia Myszograj & Dariusz Bocheński & Mirosław Mąkowski & Ewelina Płuciennik-Koropczuk, 2021. "Biogas, Solar and Geothermal Energy—The Way to a Net-Zero Energy Wastewater Treatment Plant—A Case Study," Energies, MDPI, vol. 14(21), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6898-:d:661281
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6898/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6898/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.
    2. Yang, Junwen & Chen, Bin, 2021. "Energy efficiency evaluation of wastewater treatment plants (WWTPs) based on data envelopment analysis," Applied Energy, Elsevier, vol. 289(C).
    3. Adam Masłoń & Joanna Czarnota & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2020. "The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland," Energies, MDPI, vol. 13(22), pages 1-21, November.
    4. Colmenar-Santos, Antonio & Zarzuelo-Puch, Gloria & Borge-Diez, David & García-Diéguez, Concepción, 2016. "Thermodynamic and exergoeconomic analysis of energy recovery system of biogas from a wastewater treatment plant and use in a Stirling engine," Renewable Energy, Elsevier, vol. 88(C), pages 171-184.
    5. Arifa Tanveer & Shihong Zeng & Muhammad Irfan & Rui Peng, 2021. "Do Perceived Risk, Perception of Self-Efficacy, and Openness to Technology Matter for Solar PV Adoption? An Application of the Extended Theory of Planned Behavior," Energies, MDPI, vol. 14(16), pages 1-24, August.
    6. Zeng, Shihong & Jiang, Chunxia & Ma, Chen & Su, Bin, 2018. "Investment efficiency of the new energy industry in China," Energy Economics, Elsevier, vol. 70(C), pages 536-544.
    7. Scarlat, Nicolae & Dallemand, Jean-François & Fahl, Fernando, 2018. "Biogas: Developments and perspectives in Europe," Renewable Energy, Elsevier, vol. 129(PA), pages 457-472.
    8. Sylwia Myszograj, 2019. "Biogas and Methane Potential of Pre-Thermally Disintegrated Bio-Waste," Energies, MDPI, vol. 12(20), pages 1-12, October.
    9. Manzoor Qadir & Pay Drechsel & Blanca Jiménez Cisneros & Younggy Kim & Amit Pramanik & Praem Mehta & Oluwabusola Olaniyan, 2020. "Global and regional potential of wastewater as a water, nutrient and energy source," Natural Resources Forum, Blackwell Publishing, vol. 44(1), pages 40-51, February.
    10. Qadir, M. & Drechsel, Pay & Cisneros, B. J. & Kim, Y. & Pramanik, A. & Mehta, P. & Olaniyan, O., 2020. "Global and regional potential of wastewater as a water, nutrient and energy source," Papers published in Journals (Open Access), International Water Management Institute, pages 44(1):40-51.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Odabaş Baş, Gözde & Aydınalp Köksal, Merih, 2022. "Environmental and techno-economic analysis of the integration of biogas and solar power systems into urban wastewater treatment plants," Renewable Energy, Elsevier, vol. 196(C), pages 579-597.
    2. Liu, Runxi & Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin, 2021. "Optimizing the recovery pathway of a net-zero energy wastewater treatment model by balancing energy recovery and eco-efficiency," Applied Energy, Elsevier, vol. 298(C).
    3. Adam Masłoń & Joanna Czarnota & Paulina Szczyrba & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2024. "Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants—A Case Study from Poland," Energies, MDPI, vol. 17(5), pages 1-19, March.
    4. Ascioti, Fortunato A. & Mangano, Maria Cristina & Marcianò, Claudio & Sarà , Gianluca, 2022. "The sanitation service of seagrasses – Dependencies and implications for the estimation of avoided costs," Ecosystem Services, Elsevier, vol. 54(C).
    5. Michela Gallo & Desara Malluta & Adriana Del Borghi & Erica Gagliano, 2024. "A Critical Review on Methodologies for the Energy Benchmarking of Wastewater Treatment Plants," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    6. Vicent Hernández-Chover & Águeda Bellver-Domingo & Lledó Castellet-Viciano & Francesc Hernández-Sancho, 2024. "AI Applied to the Circular Economy: An Approach in the Wastewater Sector," Sustainability, MDPI, vol. 16(4), pages 1-18, February.
    7. Débora Cynamon Kligerman & Aline Stelling Zanatta & Graziella de Araújo Toledo & Joseli Maria da Rocha Nogueira, 2023. "Path toward Sustainability in Wastewater Management in Brazil," IJERPH, MDPI, vol. 20(16), pages 1-19, August.
    8. Tawfik, Mohamed Hassan & Al-Zawaidah, Hadeel & Hoogesteger, J. & Al-Zu'bi, Maha & Hellegers, Petra & Mateo-Sagasta, Javier & Elmahdi, A., 2023. "Shifting waters: the challenges of transitioning from freshwater to treated wastewater irrigation in the northern Jordan Valley," Papers published in Journals (Open Access), International Water Management Institute, pages 15(7):1315..
    9. Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin & Ai, Zisheng & Zheng, Hongyuan & Liu, Runxi, 2021. "Evaluating the energy efficiency of wastewater treatment plants in the Yangtze River Delta: Perspectives on regional discrepancies," Applied Energy, Elsevier, vol. 297(C).
    10. Simhayov, Reuven & Ohana-Levi, Noa & Shenker, Moshe & Netzer, Yishai, 2023. "Effect of long-term treated wastewater irrigation on soil sodium levels and table grapevines' health," Agricultural Water Management, Elsevier, vol. 275(C).
    11. Xiong, Yu-Tong & Zhang, Jing & Chen, You-Peng & Guo, Jin-Song & Fang, Fang & Yan, Peng, 2021. "Geographic distribution of net-zero energy wastewater treatment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Vasileios A. Tzanakakis & Andrea G. Capodaglio & Andreas N. Angelakis, 2023. "Insights into Global Water Reuse Opportunities," Sustainability, MDPI, vol. 15(17), pages 1-30, August.
    13. Drechsel, Pay & Qadir, M. & Galibourg, D., 2022. "The WHO guidelines for safe wastewater use in agriculture: a review of implementation challenges and possible solutions in the global south," Papers published in Journals (Open Access), International Water Management Institute, pages 1-14(6):864.
    14. Ewelina Płuciennik-Koropczuk & Sylwia Myszograj & Mirosław Mąkowski, 2022. "Reducing CO 2 Emissions from Wastewater Treatment Plants by Utilising Renewable Energy Sources—Case Study," Energies, MDPI, vol. 15(22), pages 1-14, November.
    15. Chloé Grison & Stef Koop & Steven Eisenreich & Jan Hofman & I-Shin Chang & Jing Wu & Dragan Savic & Kees Leeuwen, 2023. "Integrated Water Resources Management in Cities in the World: Global Challenges," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2787-2803, May.
    16. Tamás Karches, 2022. "Fine-Tuning the Aeration Control for Energy-Efficient Operation in a Small Sewage Treatment Plant by Applying Biokinetic Modeling," Energies, MDPI, vol. 15(17), pages 1-13, August.
    17. Konstantina Fotia & George Nanos & Pantelis Barouchas & Markos Giannelos & Aikaterini Linardi & Aikaterini Vallianatou & Paraskevi Mpeza & Ioannis Tsirogiannis, 2022. "Growth Development, Physiological Status and Water Footprint Assessment of Nursery Young Olive Trees ( Olea europaea L. ‘Konservolea’) Irrigated with Urban Treated Wastewater," Resources, MDPI, vol. 11(5), pages 1-14, April.
    18. Wirginia Tomczak & Marek Gryta, 2022. "Energy-Efficient AnMBRs Technology for Treatment of Wastewaters: A Review," Energies, MDPI, vol. 15(14), pages 1-40, July.
    19. Aleksandra Szaja & Agnieszka Montusiewicz & Magdalena Lebiocka, 2021. "The Energetic Aspect of Organic Wastes Addition on Sewage Sludge Anaerobic Digestion: A Laboratory Investigation," Energies, MDPI, vol. 14(19), pages 1-12, September.
    20. Jacek Brożyna & Wadim Strielkowski & Alena Fomina & Natalya Nikitina, 2020. "Renewable Energy and EU 2020 Target for Energy Efficiency in the Czech Republic and Slovakia," Energies, MDPI, vol. 13(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6898-:d:661281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.