IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i7p1282-d221506.html
   My bibliography  Save this article

Integration of Green Energy and Advanced Energy-Efficient Technologies for Municipal Wastewater Treatment Plants

Author

Listed:
  • Ziyang Guo

    (Graduate Institute of Environmental Engineering, National Taiwan University, Taipei City 10673, Taiwan
    Carbon Cycle Research Center, National Taiwan University, Taipei City 10672, Taiwan)

  • Yongjun Sun

    (College of Urban Construction, Nanjing Tech University, Nanjing 211800, China)

  • Shu-Yuan Pan

    (Department of Bioenvironmental System Engineering, National Taiwan University, Taipei City 10617, Taiwan
    Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA)

  • Pen-Chi Chiang

    (Graduate Institute of Environmental Engineering, National Taiwan University, Taipei City 10673, Taiwan
    Carbon Cycle Research Center, National Taiwan University, Taipei City 10672, Taiwan)

Abstract

Wastewater treatment can consume a large amount of energy to meet discharge standards. However, wastewater also contains resources which could be recovered for secondary uses under proper treatment. Hence, the goal of this paper is to review the available green energy and biomass energy that can be utilized in wastewater treatment plants. Comprehensive elucidation of energy-efficient technologies for wastewater treatment plants are revealed. For these energy-efficient technologies, this review provides an introduction and current application status of these technologies as well as key performance indicators for the integration of green energy and energy-efficient technologies. There are several assessment perspectives summarized in the evaluation of the integration of green energy and energy-efficient technologies in wastewater treatment plants. To overcome the challenges in wastewater treatment plants, the Internet of Things (IoT) and green chemistry technologies for the water and energy nexus are proposed. The findings of this review are highly beneficial for the development of green energy and energy-efficient wastewater treatment plants. Future research should investigate the integration of green infrastructure and ecologically advanced treatment technologies to explore the potential benefits and advantages.

Suggested Citation

  • Ziyang Guo & Yongjun Sun & Shu-Yuan Pan & Pen-Chi Chiang, 2019. "Integration of Green Energy and Advanced Energy-Efficient Technologies for Municipal Wastewater Treatment Plants," IJERPH, MDPI, vol. 16(7), pages 1-29, April.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:7:p:1282-:d:221506
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/7/1282/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/7/1282/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hervas-Blasco, Estefanía & Pitarch, Miquel & Navarro-Peris, Emilio & Corberán, José M., 2017. "Optimal sizing of a heat pump booster for sanitary hot water production to maximize benefit for the substitution of gas boilers," Energy, Elsevier, vol. 127(C), pages 558-570.
    2. Cohen, Alex & Keiser, David A., 2017. "The effectiveness of incomplete and overlapping pollution regulation: Evidence from bans on phosphate in automatic dishwasher detergent," Journal of Public Economics, Elsevier, vol. 150(C), pages 53-74.
    3. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.
    4. Sala-Garrido, Ramón & Molinos-Senante, María & Hernández-Sancho, Francesc, 2012. "How does seasonality affect water reuse possibilities? An efficiency and cost analysis," Resources, Conservation & Recycling, Elsevier, vol. 58(C), pages 125-131.
    5. Mehr, A.S. & MosayebNezhad, M. & Lanzini, A. & Yari, M. & Mahmoudi, S.M.S. & Santarelli, M., 2018. "Thermodynamic assessment of a novel SOFC based CCHP system in a wastewater treatment plant," Energy, Elsevier, vol. 150(C), pages 299-309.
    6. Nitisoravut, Rachnarin & Regmi, Roshan, 2017. "Plant microbial fuel cells: A promising biosystems engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 81-89.
    7. Shen, Yanwen & Linville, Jessica L. & Urgun-Demirtas, Meltem & Mintz, Marianne M. & Snyder, Seth W., 2015. "An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 346-362.
    8. Fernández-Polanco, D. & Tatsumi, H., 2016. "Optimum energy integration of thermal hydrolysis through pinch analysis," Renewable Energy, Elsevier, vol. 96(PB), pages 1093-1102.
    9. Liang Jing & Bing Chen & Baiyu Zhang & Pu Li, 2013. "A Hybrid Stochastic-Interval Analytic Hierarchy Process Approach for Prioritizing the Strategies of Reusing Treated Wastewater," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-10, April.
    10. Li, Yemao & Xia, Jianjun & Su, Yingbo & Jiang, Yi, 2018. "Systematic optimization for the utilization of low-temperature industrial excess heat for district heating," Energy, Elsevier, vol. 144(C), pages 984-991.
    11. Valdés, R. & Ochoa, J. & Franco, J.A. & Sánchez-Blanco, M.J. & Bañón, S., 2015. "Saline irrigation scheduling for potted geranium based on soil electrical conductivity and moisture sensors," Agricultural Water Management, Elsevier, vol. 149(C), pages 123-130.
    12. Zeng, Siyu & Chen, Xing & Dong, Xin & Liu, Yi, 2017. "Efficiency assessment of urban wastewater treatment plants in China: Considering greenhouse gas emissions," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 157-165.
    13. Eduard Rott & Bertram Kuch & Claudia Lange & Philipp Richter & Amélie Kugele & Ralf Minke, 2018. "Removal of Emerging Contaminants and Estrogenic Activity from Wastewater Treatment Plant Effluent with UV/Chlorine and UV/H 2 O 2 Advanced Oxidation Treatment at Pilot Scale," IJERPH, MDPI, vol. 15(5), pages 1-18, May.
    14. Carroquino, Javier & Roda, Vicente & Mustata, Radu & Yago, Jesús & Valiño, Luis & Lozano, Antonio & Barreras, Félix, 2018. "Combined production of electricity and hydrogen from solar energy and its use in the wine sector," Renewable Energy, Elsevier, vol. 122(C), pages 251-263.
    15. Mirmasoumi, Siamak & Ebrahimi, Sirous & Saray, Rahim Khoshbakhti, 2018. "Enhancement of biogas production from sewage sludge in a wastewater treatment plant: Evaluation of pretreatment techniques and co-digestion under mesophilic and thermophilic conditions," Energy, Elsevier, vol. 157(C), pages 707-717.
    16. Meneses-Jácome, Alexander & Diaz-Chavez, Rocío & Velásquez-Arredondo, Héctor I. & Cárdenas-Chávez, Diana L. & Parra, Roberto & Ruiz-Colorado, Angela A., 2016. "Sustainable Energy from agro-industrial wastewaters in Latin-America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1249-1262.
    17. Luboschik, Ulrich, 1999. "Solar sludge drying — Based on the IST process," Renewable Energy, Elsevier, vol. 16(1), pages 785-788.
    18. Andrei David & Brian Vad Mathiesen & Helge Averfalk & Sven Werner & Henrik Lund, 2017. "Heat Roadmap Europe: Large-Scale Electric Heat Pumps in District Heating Systems," Energies, MDPI, vol. 10(4), pages 1-18, April.
    19. Elías-Maxil, J.A. & van der Hoek, Jan Peter & Hofman, Jan & Rietveld, Luuk, 2014. "Energy in the urban water cycle: Actions to reduce the total expenditure of fossil fuels with emphasis on heat reclamation from urban water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 808-820.
    20. Chae, Kyu-Jung & Ren, Xianghao, 2016. "Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system," Applied Energy, Elsevier, vol. 179(C), pages 565-574.
    21. Smith, Kate & Liu, Shuming & Liu, Ying & Guo, Shengjie, 2018. "Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 41-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kholofelo Clifford Malematja & Funzani Asnath Melato & Ntebogeng Sharon Mokgalaka-Fleischmann, 2023. "The Occurrence and Fate of Microplastics in Wastewater Treatment Plants in South Africa and the Degradation of Microplastics in Aquatic Environments—A Critical Review," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    2. Philomina Mamley Adantey Arthur & Yacouba Konaté & Boukary Sawadogo & Gideon Sagoe & Bismark Dwumfour-Asare & Issahaku Ahmed & Richard Bayitse & Kofi Ampomah-Benefo, 2023. "Evaluating the Potential of Renewable Energy Sources in a Full-Scale Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Wastewater in Ghana," Sustainability, MDPI, vol. 15(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Łokietek & Wojciech Tuchowski & Dorota Leciej-Pirczewska & Anna Głowacka, 2022. "Heat Recovery from a Wastewater Treatment Process—Case Study," Energies, MDPI, vol. 16(1), pages 1-15, December.
    2. Liu, Runxi & Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin, 2021. "Optimizing the recovery pathway of a net-zero energy wastewater treatment model by balancing energy recovery and eco-efficiency," Applied Energy, Elsevier, vol. 298(C).
    3. Xiong, Yu-Tong & Zhang, Jing & Chen, You-Peng & Guo, Jin-Song & Fang, Fang & Yan, Peng, 2021. "Geographic distribution of net-zero energy wastewater treatment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Mónica Vergara-Araya & Verena Hilgenfeldt & Di Peng & Heidrun Steinmetz & Jürgen Wiese, 2021. "Modelling to Lower Energy Consumption in a Large WWTP in China While Optimising Nitrogen Removal," Energies, MDPI, vol. 14(18), pages 1-24, September.
    5. Ali, Syed Muhammad Hassan & Lenzen, Manfred & Sack, Fabian & Yousefzadeh, Moslem, 2020. "Electricity generation and demand flexibility in wastewater treatment plants: Benefits for 100% renewable electricity grids," Applied Energy, Elsevier, vol. 268(C).
    6. Yuan, Meng & Vad Mathiesen, Brian & Schneider, Noémi & Xia, Jianjun & Zheng, Wen & Sorknæs, Peter & Lund, Henrik & Zhang, Lipeng, 2024. "Renewable energy and waste heat recovery in district heating systems in China: A systematic review," Energy, Elsevier, vol. 294(C).
    7. Zhu, Wenjing & Duan, Cuncun & Chen, Bin, 2024. "Energy efficiency assessment of wastewater treatment plants in China based on multiregional input–output analysis and data envelopment analysis," Applied Energy, Elsevier, vol. 356(C).
    8. Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. Panepinto, Deborah & Fiore, Silvia & Zappone, Mariantonia & Genon, Giuseppe & Meucci, Lorenza, 2016. "Evaluation of the energy efficiency of a large wastewater treatment plant in Italy," Applied Energy, Elsevier, vol. 161(C), pages 404-411.
    10. Marzena Smol, 2023. "Circular Economy in Wastewater Treatment Plant—Water, Energy and Raw Materials Recovery," Energies, MDPI, vol. 16(9), pages 1-18, May.
    11. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    12. Macintosh, C. & Astals, S. & Sembera, C. & Ertl, A. & Drewes, J.E. & Jensen, P.D. & Koch, K., 2019. "Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration," Applied Energy, Elsevier, vol. 242(C), pages 797-808.
    13. Sakiewicz, P. & Piotrowski, K. & Ober, J. & Karwot, J., 2020. "Innovative artificial neural network approach for integrated biogas – wastewater treatment system modelling: Effect of plant operating parameters on process intensification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    14. Guven, Huseyin & Ersahin, Mustafa Evren & Dereli, Recep Kaan & Ozgun, Hale & Isik, Isa & Ozturk, Izzet, 2019. "Energy recovery potential of anaerobic digestion of excess sludge from high-rate activated sludge systems co-treating municipal wastewater and food waste," Energy, Elsevier, vol. 172(C), pages 1027-1036.
    15. Mattioli, A. & Gatti, G.B. & Mattuzzi, G.P. & Cecchi, F. & Bolzonella, D., 2017. "Co-digestion of the organic fraction of municipal solid waste and sludge improves the energy balance of wastewater treatment plants: Rovereto case study," Renewable Energy, Elsevier, vol. 113(C), pages 980-988.
    16. Strazzabosco, A. & Kenway, S.J. & Conrad, S.A. & Lant, P.A., 2021. "Renewable electricity generation in the Australian water industry: Lessons learned and challenges for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    17. Mustafa Erguvan & David W. MacPhee, 2021. "Can a Wastewater Treatment Plant Power Itself? Results from a Novel Biokinetic-Thermodynamic Analysis," J, MDPI, vol. 4(4), pages 1-24, October.
    18. Derick Lima & Gregory Appleby & Li Li, 2023. "A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants," Energies, MDPI, vol. 16(5), pages 1-34, March.
    19. Nigel Twi-Yeboah & Dacosta Osei & William H. Dontoh & George Adu Asamoah & Janet Baffoe & Michael K. Danquah, 2024. "Enhancing Energy Efficiency and Resource Recovery in Wastewater Treatment Plants," Energies, MDPI, vol. 17(13), pages 1-23, June.
    20. Yin, Changkai & Shen, Yanwen & Zhu, Nanwen & Huang, Qiujie & Lou, Ziyang & Yuan, Haiping, 2018. "Anaerobic digestion of waste activated sludge with incineration bottom ash: Enhanced methane production and CO2 sequestration," Applied Energy, Elsevier, vol. 215(C), pages 503-511.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:7:p:1282-:d:221506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.