IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v76y2017icp81-89.html
   My bibliography  Save this article

Plant microbial fuel cells: A promising biosystems engineering

Author

Listed:
  • Nitisoravut, Rachnarin
  • Regmi, Roshan

Abstract

Conversion of waste to energy via a biological process establishes microbial fuel cells (MFC) as a prominent source of sustainable energy. MFC has been investigated for bioelectricity production through organic degradation of wastewater by microbial consortium. The potential of MFC applications in biosensors, desalination and hydrogen gas production has been explored. Many descendants of an MFC have been developed in recent years based upon the configurations, structures and purposes such as sediment MFC, mud MFC, soil MFC, constructed wetland MFC, photosynthetic MFC and biovolt-photogalvanic MFC. A plant microbial fuel cell (PMFC) is a promising modification of MFC that exercises the unique plant-microbe relationship at the rhizosphere region of a plant and converts solar energy into bioelectricity. In-situ bioelectricity and biomass production, rather than the supply of external substrates, make this technology different from traditional MFCs. Thus, designing and understanding PMFCs should be viewed from a biosystems engineering perspective rather than only through MFC methodology. Plant-microbe harmony at the soil interface, driven by rhizodeposition coupled with efficient engineering, ultimately directs towards its real applications. Thus, this paper reviews three main paradigms. Firstly, effects of plants in PMFC via rhizodeposition and photosynthetic activity are explored. Secondly, the role of microbes driven by soil physiochemical and biological characteristics are shown. Thirdly, the engineering aspects involved in designing an efficient configuration are revealed and an attempt is made to interpret the PMFC with biosystems principles. Furthermore, an overview of a PMFC system is done, along with the future perspectives and challenges.

Suggested Citation

  • Nitisoravut, Rachnarin & Regmi, Roshan, 2017. "Plant microbial fuel cells: A promising biosystems engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 81-89.
  • Handle: RePEc:eee:rensus:v:76:y:2017:i:c:p:81-89
    DOI: 10.1016/j.rser.2017.03.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117303805
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.03.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wetser, Koen & Sudirjo, Emilius & Buisman, Cees J.N. & Strik, David P.B.T.B., 2015. "Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode," Applied Energy, Elsevier, vol. 137(C), pages 151-157.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziyang Guo & Yongjun Sun & Shu-Yuan Pan & Pen-Chi Chiang, 2019. "Integration of Green Energy and Advanced Energy-Efficient Technologies for Municipal Wastewater Treatment Plants," IJERPH, MDPI, vol. 16(7), pages 1-29, April.
    2. Van Limbergen, T. & Bonné, R. & Hustings, J. & Valcke, R. & Thijs, S. & Vangronsveld, J. & Manca, J.V., 2022. "Plant microbial fuel cells from the perspective of photovoltaics: Efficiency, power, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Ong, Samuel & Al-Othman, Amani & Tawalbeh, Muhammad, 2023. "Emerging technologies in prognostics for fuel cells including direct hydrocarbon fuel cells," Energy, Elsevier, vol. 277(C).
    4. Dziegielowski, Jakub & Metcalfe, Benjamin & Villegas-Guzman, Paola & Martínez-Huitle, Carlos A. & Gorayeb, Adryane & Wenk, Jannis & Di Lorenzo, Mirella, 2020. "Development of a functional stack of soil microbial fuel cells to power a water treatment reactor: From the lab to field trials in North East Brazil," Applied Energy, Elsevier, vol. 278(C).
    5. Rusyn, Iryna, 2021. "Role of microbial community and plant species in performance of plant microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Kabutey, Felix Tetteh & Zhao, Qingliang & Wei, Liangliang & Ding, Jing & Antwi, Philip & Quashie, Frank Koblah & Wang, Weiye, 2019. "An overview of plant microbial fuel cells (PMFCs): Configurations and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 402-414.
    7. Apollon, Wilgince & Kamaraj, Sathish-Kumar & Silos-Espino, Héctor & Perales-Segovia, Catarino & Valera-Montero, Luis L. & Maldonado-Ruelas, Víctor A. & Vázquez-Gutiérrez, Marco A. & Ortiz-Medina, Raúl, 2020. "Impact of Opuntia species plant bio-battery in a semi-arid environment: Demonstration of their applications," Applied Energy, Elsevier, vol. 279(C).
    8. Zhang, Ying & Liu, Mengmeng & Zhou, Minghua & Yang, Huijia & Liang, Liang & Gu, Tingyue, 2019. "Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 13-29.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vera, Sergio & Pinto, Camilo & Tabares-Velasco, Paulo Cesar & Bustamante, Waldo, 2018. "A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools," Applied Energy, Elsevier, vol. 232(C), pages 752-764.
    2. Li, Yan & Williams, Isaiah & Xu, Zhiheng & Li, Baikun & Li, Baitao, 2016. "Energy-positive nitrogen removal using the integrated short-cut nitrification and autotrophic denitrification microbial fuel cells (MFCs)," Applied Energy, Elsevier, vol. 163(C), pages 352-360.
    3. Kabutey, Felix Tetteh & Zhao, Qingliang & Wei, Liangliang & Ding, Jing & Antwi, Philip & Quashie, Frank Koblah & Wang, Weiye, 2019. "An overview of plant microbial fuel cells (PMFCs): Configurations and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 402-414.
    4. Kim, Jung Hwan & Park, I Seul & Park, Joo Yang, 2015. "Electricity generation and recovery of iron hydroxides using a single chamber fuel cell with iron anode and air-cathode for electrocoagulation," Applied Energy, Elsevier, vol. 160(C), pages 18-27.
    5. Apollon, Wilgince & Kamaraj, Sathish-Kumar & Silos-Espino, Héctor & Perales-Segovia, Catarino & Valera-Montero, Luis L. & Maldonado-Ruelas, Víctor A. & Vázquez-Gutiérrez, Marco A. & Ortiz-Medina, Raúl, 2020. "Impact of Opuntia species plant bio-battery in a semi-arid environment: Demonstration of their applications," Applied Energy, Elsevier, vol. 279(C).
    6. Farahmand Habibi, Maryam & Arvand, Majid & Sohrabnezhad, Shabnam, 2021. "Boosting bioelectricity generation in microbial fuel cells using metal@metal oxides/nitrogen-doped carbon quantum dots," Energy, Elsevier, vol. 223(C).
    7. Trapero, Juan R. & Horcajada, Laura & Linares, Jose J. & Lobato, Justo, 2017. "Is microbial fuel cell technology ready? An economic answer towards industrial commercialization," Applied Energy, Elsevier, vol. 185(P1), pages 698-707.
    8. Van Limbergen, T. & Bonné, R. & Hustings, J. & Valcke, R. & Thijs, S. & Vangronsveld, J. & Manca, J.V., 2022. "Plant microbial fuel cells from the perspective of photovoltaics: Efficiency, power, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    9. Han, He-Xing & Shi, Chen & Yuan, Li & Sheng, Guo-Ping, 2017. "Enhancement of methyl orange degradation and power generation in a photoelectrocatalytic microbial fuel cell," Applied Energy, Elsevier, vol. 204(C), pages 382-389.
    10. Wang, Chin-Tsan & Huang, Yan-Sian & Sangeetha, Thangavel & Yan, Wei-Mon, 2018. "Assessment of recirculation batch mode operation in bufferless Bio-cathode microbial Fuel Cells (MFCs)," Applied Energy, Elsevier, vol. 209(C), pages 120-126.
    11. Rusyn, Iryna, 2021. "Role of microbial community and plant species in performance of plant microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Bajracharya, Suman & Sharma, Mohita & Mohanakrishna, Gunda & Dominguez Benneton, Xochitl & Strik, David P.B.T.B. & Sarma, Priyangshu M. & Pant, Deepak, 2016. "An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond," Renewable Energy, Elsevier, vol. 98(C), pages 153-170.
    13. Emilius Sudirjo & Paola Y. Constantino Diaz & Matteo Cociancich & Rens Lisman & Christian Snik & Cees J. N. Buisman & David P. B. T. B. Strik, 2020. "A Thin Layer of Activated Carbon Deposited on Polyurethane Cube Leads to New Conductive Bioanode for (Plant) Microbial Fuel Cell," Energies, MDPI, vol. 13(3), pages 1-21, January.
    14. Wetser, Koen & Dieleman, Kim & Buisman, Cees & Strik, David, 2017. "Electricity from wetlands: Tubular plant microbial fuels with silicone gas-diffusion biocathodes," Applied Energy, Elsevier, vol. 185(P1), pages 642-649.
    15. Pasternak, Grzegorz & Greenman, John & Ieropoulos, Ioannis, 2016. "Regeneration of the power performance of cathodes affected by biofouling," Applied Energy, Elsevier, vol. 173(C), pages 431-437.
    16. Jiang, Yong & Liang, Peng & Zhang, Changyong & Bian, Yanhong & Sun, Xueliang & Zhang, Helan & Yang, Xufei & Zhao, Feng & Huang, Xia, 2016. "Periodic polarity reversal for stabilizing the pH in two-chamber microbial electrolysis cells," Applied Energy, Elsevier, vol. 165(C), pages 670-675.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:76:y:2017:i:c:p:81-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.