IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v110y2019icp402-414.html
   My bibliography  Save this article

An overview of plant microbial fuel cells (PMFCs): Configurations and applications

Author

Listed:
  • Kabutey, Felix Tetteh
  • Zhao, Qingliang
  • Wei, Liangliang
  • Ding, Jing
  • Antwi, Philip
  • Quashie, Frank Koblah
  • Wang, Weiye

Abstract

The depletion of non-renewable energy resources has led to the exploitation of alternative renewable sources such as solar energy, which is mainly employed to generate electricity using conventional photovoltaic cells. In recent years, other alternative bioelectrochemical systems such as plant microbial fuel cells (PMFCs) has been developed to generate electricity via biological interactions of plants and microbes in the presence of sunlight. Compared to the photovoltaic cells, PMFCs can also generate power continuously, being implemented on agricultural lands without any obstruction to food cultivation/production processes or even in the fields unsuitable for food production. To explore and optimize the use of living plants for sustainable power generation in PMFCs, the key fundamental aspects peculiar to PMFCs were comprehensively reviewed. Subsequently, various reported configurations of PMFCs embedded with vascular plants, macrophytes and bryophytes as well as their combination with constructed wetlands were evaluated and discussed. So far, PMFCs could be applied in the fields of wastewater treatment, polluted sediment and surface water remediation, greenhouse gas mitigation and biosensing. Finally, the prospects and challenges of PMFCs for full-scale applications were also presented. Overall, PMFCs will become alternative renewable energy sources to reduce energy scarcity and related environmental issues when they are scaled up and applied in-situ.

Suggested Citation

  • Kabutey, Felix Tetteh & Zhao, Qingliang & Wei, Liangliang & Ding, Jing & Antwi, Philip & Quashie, Frank Koblah & Wang, Weiye, 2019. "An overview of plant microbial fuel cells (PMFCs): Configurations and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 402-414.
  • Handle: RePEc:eee:rensus:v:110:y:2019:i:c:p:402-414
    DOI: 10.1016/j.rser.2019.05.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119303223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.05.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wetser, Koen & Dieleman, Kim & Buisman, Cees & Strik, David, 2017. "Electricity from wetlands: Tubular plant microbial fuels with silicone gas-diffusion biocathodes," Applied Energy, Elsevier, vol. 185(P1), pages 642-649.
    2. Butti, Sai Kishore & Velvizhi, G. & Sulonen, Mira L.K. & Haavisto, Johanna M. & Oguz Koroglu, Emre & Yusuf Cetinkaya, Afsin & Singh, Surya & Arya, Divyanshu & Annie Modestra, J. & Vamsi Krishna, K. & , 2016. "Microbial electrochemical technologies with the perspective of harnessing bioenergy: Maneuvering towards upscaling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 462-476.
    3. Ashley E. Franks & Kelly P. Nevin, 2010. "Microbial Fuel Cells, A Current Review," Energies, MDPI, vol. 3(5), pages 1-21, April.
    4. Nitisoravut, Rachnarin & Regmi, Roshan, 2017. "Plant microbial fuel cells: A promising biosystems engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 81-89.
    5. Wetser, Koen & Sudirjo, Emilius & Buisman, Cees J.N. & Strik, David P.B.T.B., 2015. "Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode," Applied Energy, Elsevier, vol. 137(C), pages 151-157.
    6. Zhang, Ying & Liu, Mengmeng & Zhou, Minghua & Yang, Huijia & Liang, Liang & Gu, Tingyue, 2019. "Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 13-29.
    7. Bajracharya, Suman & Sharma, Mohita & Mohanakrishna, Gunda & Dominguez Benneton, Xochitl & Strik, David P.B.T.B. & Sarma, Priyangshu M. & Pant, Deepak, 2016. "An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond," Renewable Energy, Elsevier, vol. 98(C), pages 153-170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilgince Apollon & Juan Antonio Vidales-Contreras & Humberto Rodríguez-Fuentes & Juan Florencio Gómez-Leyva & Emilio Olivares-Sáenz & Víctor Arturo Maldonado-Ruelas & Raúl Arturo Ortiz-Medina & Sathis, 2022. "Livestock’s Urine-Based Plant Microbial Fuel Cells Improve Plant Growth and Power Generation," Energies, MDPI, vol. 15(19), pages 1-18, September.
    2. Aguilar-Moreno, Guadalupe Stefanny & Navarro-Cerón, Elizabeth & Velázquez-Hernández, Azucena & Hernández-Eugenio, Guadalupe & Aguilar-Méndez, Miguel Ángel & Espinosa-Solares, Teodoro, 2020. "Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles," Renewable Energy, Elsevier, vol. 147(P1), pages 204-213.
    3. Chouhan, Raghuraj Singh & Gandhi, Sonu & Verma, Suresh K. & Jerman, Ivan & Baker, Syed & Štrok, Marko, 2023. "Recent advancements in the development of Two-Dimensional nanostructured based anode materials for stable power density in microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Dziegielowski, Jakub & Metcalfe, Benjamin & Villegas-Guzman, Paola & Martínez-Huitle, Carlos A. & Gorayeb, Adryane & Wenk, Jannis & Di Lorenzo, Mirella, 2020. "Development of a functional stack of soil microbial fuel cells to power a water treatment reactor: From the lab to field trials in North East Brazil," Applied Energy, Elsevier, vol. 278(C).
    5. Qing Wu & Jieqiong Liu & Qiannan Li & Wenjun Mo & Ruihan Wan & Sen Peng, 2022. "Effect of Electrode Distances on Remediation of Eutrophic Water and Sediment by Sediment Microbial Fuel Cell Coupled Floating Beds," IJERPH, MDPI, vol. 19(16), pages 1-16, August.
    6. Rusyn, Iryna, 2021. "Role of microbial community and plant species in performance of plant microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Apollon, Wilgince & Kamaraj, Sathish-Kumar & Silos-Espino, Héctor & Perales-Segovia, Catarino & Valera-Montero, Luis L. & Maldonado-Ruelas, Víctor A. & Vázquez-Gutiérrez, Marco A. & Ortiz-Medina, Raúl, 2020. "Impact of Opuntia species plant bio-battery in a semi-arid environment: Demonstration of their applications," Applied Energy, Elsevier, vol. 279(C).
    8. J. Sadhik Basha & Tahereh Jafary & Ranjit Vasudevan & Jahanzeb Khan Bahadur & Muna Al Ajmi & Aadil Al Neyadi & Manzoore Elahi M. Soudagar & MA Mujtaba & Abrar Hussain & Waqar Ahmed & Kiran Shahapurkar, 2021. "Potential of Utilization of Renewable Energy Technologies in Gulf Countries," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    9. Kaur, Rajnish & Marwaha, Aanchal & Chhabra, Varun A. & Kim, Ki-Hyun & Tripathi, S.K., 2020. "Recent developments on functional nanomaterial-based electrodes for microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Apollon, Wilgince & Kamaraj, Sathish-Kumar & Silos-Espino, Héctor & Perales-Segovia, Catarino & Valera-Montero, Luis L. & Maldonado-Ruelas, Víctor A. & Vázquez-Gutiérrez, Marco A. & Ortiz-Medina, Raúl, 2020. "Impact of Opuntia species plant bio-battery in a semi-arid environment: Demonstration of their applications," Applied Energy, Elsevier, vol. 279(C).
    2. Rusyn, Iryna, 2021. "Role of microbial community and plant species in performance of plant microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Jadhav, Dipak A. & Ghosh Ray, Sreemoyee & Ghangrekar, Makarand M., 2017. "Third generation in bio-electrochemical system research – A systematic review on mechanisms for recovery of valuable by-products from wastewater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1022-1031.
    4. Anusha Ganta & Yasser Bashir & Sovik Das, 2022. "Dairy Wastewater as a Potential Feedstock for Valuable Production with Concurrent Wastewater Treatment through Microbial Electrochemical Technologies," Energies, MDPI, vol. 15(23), pages 1-34, November.
    5. Fischer, Fabian, 2018. "Photoelectrode, photovoltaic and photosynthetic microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 16-27.
    6. Dziegielowski, Jakub & Metcalfe, Benjamin & Villegas-Guzman, Paola & Martínez-Huitle, Carlos A. & Gorayeb, Adryane & Wenk, Jannis & Di Lorenzo, Mirella, 2020. "Development of a functional stack of soil microbial fuel cells to power a water treatment reactor: From the lab to field trials in North East Brazil," Applied Energy, Elsevier, vol. 278(C).
    7. Van Limbergen, T. & Bonné, R. & Hustings, J. & Valcke, R. & Thijs, S. & Vangronsveld, J. & Manca, J.V., 2022. "Plant microbial fuel cells from the perspective of photovoltaics: Efficiency, power, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    8. Yadav, Ashish & Verma, Nishith, 2019. "Efficient hydrogen production using Ni-graphene oxide-dispersed laser-engraved 3D carbon micropillars as electrodes for microbial electrolytic cell," Renewable Energy, Elsevier, vol. 138(C), pages 628-638.
    9. Emilius Sudirjo & Paola Y. Constantino Diaz & Matteo Cociancich & Rens Lisman & Christian Snik & Cees J. N. Buisman & David P. B. T. B. Strik, 2020. "A Thin Layer of Activated Carbon Deposited on Polyurethane Cube Leads to New Conductive Bioanode for (Plant) Microbial Fuel Cell," Energies, MDPI, vol. 13(3), pages 1-21, January.
    10. Yifan Yu & Jafar Ali & Yuesuo Yang & Peijing Kuang & Wenjing Zhang & Ying Lu & Yan Li, 2022. "Synchronous Cr(VI) Remediation and Energy Production Using Microbial Fuel Cell from a Subsurface Environment: A Review," Energies, MDPI, vol. 15(6), pages 1-22, March.
    11. Karamanev, Dimitre & Pupkevich, Victor & Penev, Kalin & Glibin, Vassili & Gohil, Jay & Vajihinejad, Vahid, 2017. "Biological conversion of hydrogen to electricity for energy storage," Energy, Elsevier, vol. 129(C), pages 237-245.
    12. Zhijie Duan & Luo Zhang & Lili Feng & Shuguang Yu & Zengyou Jiang & Xiaoming Xu & Jichao Hong, 2021. "Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests," Energies, MDPI, vol. 14(23), pages 1-19, November.
    13. Theofilos Kamperidis & Asimina Tremouli & Antonis Peppas & Gerasimos Lyberatos, 2022. "A 2D Modelling Approach for Predicting the Response of a Two-Chamber Microbial Fuel Cell to Substrate Concentration and Electrolyte Conductivity Changes," Energies, MDPI, vol. 15(4), pages 1-15, February.
    14. Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    15. Barbara Włodarczyk & Paweł P. Włodarczyk, 2020. "The Membrane-Less Microbial Fuel Cell (ML-MFC) with Ni-Co and Cu-B Cathode Powered by the Process Wastewater from Yeast Production," Energies, MDPI, vol. 13(15), pages 1-13, August.
    16. Hu, Jianjun & Zhang, Quanguo & Lee, Duu-Jong & Ngo, Huu Hao, 2018. "Feasible use of microbial fuel cells for pollution treatment," Renewable Energy, Elsevier, vol. 129(PB), pages 824-829.
    17. Nitisoravut, Rachnarin & Regmi, Roshan, 2017. "Plant microbial fuel cells: A promising biosystems engineering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 81-89.
    18. Vera, Sergio & Pinto, Camilo & Tabares-Velasco, Paulo Cesar & Bustamante, Waldo, 2018. "A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools," Applied Energy, Elsevier, vol. 232(C), pages 752-764.
    19. Paweł P. Włodarczyk & Barbara Włodarczyk, 2018. "Microbial Fuel Cell with Ni–Co Cathode Powered with Yeast Wastewater," Energies, MDPI, vol. 11(11), pages 1-9, November.
    20. Kaur, Rajnish & Marwaha, Aanchal & Chhabra, Varun A. & Kim, Ki-Hyun & Tripathi, S.K., 2020. "Recent developments on functional nanomaterial-based electrodes for microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:110:y:2019:i:c:p:402-414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.