IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i16p10423-d894018.html
   My bibliography  Save this article

Effect of Electrode Distances on Remediation of Eutrophic Water and Sediment by Sediment Microbial Fuel Cell Coupled Floating Beds

Author

Listed:
  • Qing Wu

    (School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China)

  • Jieqiong Liu

    (School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China)

  • Qiannan Li

    (School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China)

  • Wenjun Mo

    (School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China)

  • Ruihan Wan

    (School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China)

  • Sen Peng

    (School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, China)

Abstract

Efficient and sustainable technologies for cleaning of contaminated water and sediments are in urgent demand. In this study, a new type of sediment microbial fuel cell coupled floating bed (FB-SMFC) was developed to repair eutrophic water and sediment in a cleaner way. The effect of electrode spacing on the power generation capacity and the synchronous remediation of pollutants from eutrophic water and sediment were studied. When the electrode distance was 60 cm, the maximum power generation and pollutant removal effects were obtained. At the end of the experiment, the maximum output voltage was 0.4 V, and the chemical oxygen demand (COD Cr , potassium dichromate method), total nitrogen (TN), and total phosphorus (TP) contents in the overlying water were 8 mg/L, 0.7 mg/L, and 0.39 mg/L. The corresponding removal rates were 88.2%, 78.8%, and 59.0%, respectively. The removal rates of organic matter and TN in the sediment were 12.8% and 86.4%, respectively, and the fixation rate of TP was 29.2%. Proteobacteria was the dominant phylum of bacteria in the sediment and anode. Many anaerobic bacteria were found in the overlying water, which facilitated denitrification. Overall, the results of this research revealed a highly efficient and reliable strategy for eutrophic water and sediment remediation, aquatic ecosystems restoration, and human health protection.

Suggested Citation

  • Qing Wu & Jieqiong Liu & Qiannan Li & Wenjun Mo & Ruihan Wan & Sen Peng, 2022. "Effect of Electrode Distances on Remediation of Eutrophic Water and Sediment by Sediment Microbial Fuel Cell Coupled Floating Beds," IJERPH, MDPI, vol. 19(16), pages 1-16, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10423-:d:894018
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/16/10423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/16/10423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haosagul, Saowaluck & Prommeenate, Peerada & Hobbs, Glyn & Pisutpaisal, Nipon, 2020. "Sulfide-oxidizing bacteria community in full-scale bioscrubber treating H2S in biogas from swine anaerobic digester," Renewable Energy, Elsevier, vol. 150(C), pages 973-980.
    2. Kabutey, Felix Tetteh & Zhao, Qingliang & Wei, Liangliang & Ding, Jing & Antwi, Philip & Quashie, Frank Koblah & Wang, Weiye, 2019. "An overview of plant microbial fuel cells (PMFCs): Configurations and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 402-414.
    3. Almatouq, A. & Babatunde, A.O., 2018. "Identifying optimized conditions for concurrent electricity production and phosphorus recovery in a mediator-less dual chamber microbial fuel cell," Applied Energy, Elsevier, vol. 230(C), pages 122-134.
    4. Xu, Lei & Wang, Bodi & Liu, Xiuhua & Yu, Wenzheng & Zhao, Yaqian, 2018. "Maximizing the energy harvest from a microbial fuel cell embedded in a constructed wetland," Applied Energy, Elsevier, vol. 214(C), pages 83-91.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Sheng & Lin, Zhang & Ai, Zhengtao & Huan, Chao & Cheng, Yong & Wang, Fenghao, 2019. "Multi-criteria performance optimization for operation of stratum ventilation under heating mode," Applied Energy, Elsevier, vol. 239(C), pages 969-980.
    2. Wilgince Apollon & Juan Antonio Vidales-Contreras & Humberto Rodríguez-Fuentes & Juan Florencio Gómez-Leyva & Emilio Olivares-Sáenz & Víctor Arturo Maldonado-Ruelas & Raúl Arturo Ortiz-Medina & Sathis, 2022. "Livestock’s Urine-Based Plant Microbial Fuel Cells Improve Plant Growth and Power Generation," Energies, MDPI, vol. 15(19), pages 1-18, September.
    3. Tonni Agustiono Kurniawan & Mohd Hafiz Dzarfan Othman & Xue Liang & Muhammad Ayub & Hui Hwang Goh & Tutuk Djoko Kusworo & Ayesha Mohyuddin & Kit Wayne Chew, 2022. "Microbial Fuel Cells (MFC): A Potential Game-Changer in Renewable Energy Development," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    4. Aguilar-Moreno, Guadalupe Stefanny & Navarro-Cerón, Elizabeth & Velázquez-Hernández, Azucena & Hernández-Eugenio, Guadalupe & Aguilar-Méndez, Miguel Ángel & Espinosa-Solares, Teodoro, 2020. "Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles," Renewable Energy, Elsevier, vol. 147(P1), pages 204-213.
    5. Apollon, Wilgince & Kamaraj, Sathish-Kumar & Silos-Espino, Héctor & Perales-Segovia, Catarino & Valera-Montero, Luis L. & Maldonado-Ruelas, Víctor A. & Vázquez-Gutiérrez, Marco A. & Ortiz-Medina, Raúl, 2020. "Impact of Opuntia species plant bio-battery in a semi-arid environment: Demonstration of their applications," Applied Energy, Elsevier, vol. 279(C).
    6. Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
    7. Christwardana, Marcelinus & Frattini, Domenico & Accardo, Grazia & Yoon, Sung Pil & Kwon, Yongchai, 2018. "Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst," Applied Energy, Elsevier, vol. 222(C), pages 369-382.
    8. Becker, C.M. & Marder, M. & Junges, E. & Konrad, O., 2022. "Technologies for biogas desulfurization - An overview of recent studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Wan, Taocheng & Bai, Yan & Wang, Tingxiang & Wei, Zhuo, 2022. "BPNN-based optimal strategy for dynamic energy optimization with providing proper thermal comfort under the different outdoor air temperatures," Applied Energy, Elsevier, vol. 313(C).
    10. Rusyn, Iryna, 2021. "Role of microbial community and plant species in performance of plant microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. J. Sadhik Basha & Tahereh Jafary & Ranjit Vasudevan & Jahanzeb Khan Bahadur & Muna Al Ajmi & Aadil Al Neyadi & Manzoore Elahi M. Soudagar & MA Mujtaba & Abrar Hussain & Waqar Ahmed & Kiran Shahapurkar, 2021. "Potential of Utilization of Renewable Energy Technologies in Gulf Countries," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    12. Oliveira, Verónica & Kirkelund, Gunvor M. & Horta, Carmo & Labrincha, João & Dias-Ferreira, Celia, 2019. "Improving the energy efficiency of an electrodialytic process to extract phosphorus from municipal solid waste digestate through different strategies," Applied Energy, Elsevier, vol. 247(C), pages 182-189.
    13. Kaur, Rajnish & Marwaha, Aanchal & Chhabra, Varun A. & Kim, Ki-Hyun & Tripathi, S.K., 2020. "Recent developments on functional nanomaterial-based electrodes for microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Chouhan, Raghuraj Singh & Gandhi, Sonu & Verma, Suresh K. & Jerman, Ivan & Baker, Syed & Štrok, Marko, 2023. "Recent advancements in the development of Two-Dimensional nanostructured based anode materials for stable power density in microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Dziegielowski, Jakub & Metcalfe, Benjamin & Villegas-Guzman, Paola & Martínez-Huitle, Carlos A. & Gorayeb, Adryane & Wenk, Jannis & Di Lorenzo, Mirella, 2020. "Development of a functional stack of soil microbial fuel cells to power a water treatment reactor: From the lab to field trials in North East Brazil," Applied Energy, Elsevier, vol. 278(C).
    16. Joanna K. Huertas & Lawrence Quipuzco & Amro Hassanein & Stephanie Lansing, 2020. "Comparing Hydrogen Sulfide Removal Efficiency in a Field-Scale Digester Using Microaeration and Iron Filters," Energies, MDPI, vol. 13(18), pages 1-14, September.
    17. Zhang, Ying & Liu, Mengmeng & Zhou, Minghua & Yang, Huijia & Liang, Liang & Gu, Tingyue, 2019. "Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 13-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10423-:d:894018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.