IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v209y2025ics1364032124008700.html
   My bibliography  Save this article

Biodesulfurization: Effective and sustainable technologies for biogas hydrogen sulfide removal

Author

Listed:
  • Dada, Oluwatunmise Israel
  • Yu, Liang
  • Neibergs, Shannon
  • Chen, Shulin

Abstract

Biogas is a valuable green energy source. Hydrogen sulfide removal is essential for biogas upgrading for high-end applications. This work provides a comprehensive review of biogas biodesulfurization technologies for industrial applications, focusing on aerobic and anoxic biofilters, biotrickling filters, and bioscrubbers. Key topics include removal mechanisms, system design, performance, operating factors, best-fit applications, and design-based cost analysis. Biodesulfurization technologies are highly efficient, achieving up to 99 % removal efficiency at full scale, particularly in bioscrubbers and biotrickling filters due to improved design configurations. Performance is largely affected by operating conditions and the composition, activity, and robustness of sulfur-oxidizing microorganisms. While kinetic models are widely used to study performance, further research is needed to advance the application of computational fluid dynamics for system modeling. Biodesulfurization technologies prove to be environmentally sustainable and may be more economically viable in large-scale, commercial applications. Reducing energy and packing material replacement costs would further improve economic viability. While biodesulfurization technologies are safe, precautions must be taken to avoid explosion risks from methane/oxygen mixtures and hydrogen sulfide gas poisoning. Ultimately, selecting suitable biodesulfurization technology for industrial applications depends on the volume of biogas to be treated, the choice of sulfur microorganisms, system stability, and the intended biogas end-use.

Suggested Citation

  • Dada, Oluwatunmise Israel & Yu, Liang & Neibergs, Shannon & Chen, Shulin, 2025. "Biodesulfurization: Effective and sustainable technologies for biogas hydrogen sulfide removal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:rensus:v:209:y:2025:i:c:s1364032124008700
    DOI: 10.1016/j.rser.2024.115144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124008700
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:209:y:2025:i:c:s1364032124008700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.