IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7698-d1141769.html
   My bibliography  Save this article

Anaerobic Fluidized-Bed Membrane Bioreactor for Treatment of Liquid Fraction of Sludge Digestate: Performance and Agricultural Reuse Analysis

Author

Listed:
  • Lu Liu

    (National Engineering Research Center For Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China)

  • Jun Zhang

    (National Engineering Research Center For Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China)

  • Yifan Chen

    (National Engineering Research Center For Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China)

  • Ze Guo

    (National Engineering Research Center For Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China)

  • Ganzhan Xu

    (National Engineering Research Center For Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China)

  • Linlin Yin

    (National Engineering Research Center For Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China)

  • Yu Tian

    (National Engineering Research Center For Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China)

  • Stevo Lavrnić

    (Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Viale Giuseppe Fanin 40-50, 40127 Bologna, Italy)

Abstract

The treatment of sludge digestion liquid is a big challenge in wastewater treatment. If treated as normal wastewater, large amounts of nitrogen and phosphorus present in the sludge digestion liquid might be wasted when they could be reused in agricultural irrigation and reduce the consumption of artificial fertilizers. Thus, it is of utmost importance to deliver a simple and feasible strategy to treat sludge digestion liquid for agricultural reuse. In this study, a novel type of anaerobic fluidized bed membrane bioreactor system (US-AnFMBR) was developed by combining an ultrasonic processing unit and biochar in AnFMBR. The improvement of sludge properties, removal of pollutants performance and membrane fouling mitigation were achieved in this novel system. The optimal dose of BC (biochar) was 2.5 g·L −1 , and the optimal ultrasonic treatment conditions were 30 min at 26 W. The main contribution of ultrasound was to improve the activity of sludge microorganisms to adsorb and degrade more organic matter present in sewage. The system achieved the removal efficiencies of COD, NH 4 + -N and PO 4 3− -P up to 89.41%, 49.29% and 54.83%, respectively, and had a better mitigation effect in terms of membrane fouling. On the one hand, the biochar addition for COD removal performance was mainly manifested in membrane rejection performance. On the other hand, the combination of low-cost biochar and AnFMBR can also provide new ideas for the recycling of agricultural waste for biochar production. However, regarding the removal efficiency of NH 4 + -N and PO 4 3− -P, the US-AnFMBR system promoted the activity of starved sludge to preferentially absorb NH 4 + -N compared with PO 4 3− -P by statistical analysis. The US-AnFMBR can reduce the viscosity of sludge and release more small molecular substances, thus better mitigating membrane fouling. Long-term operation performance also revealed the excellent stability of the sludge digestion liquid treatment. The US-AnFMBR system achieves the recovery of nitrogen and phosphorus resources for subsequent agricultural recycling, and avoids the eutrophication of water ecosystems. Reclaimed water meets the nutrient requirements of typical crops during the growing season. To a certain extent, carbon emission reductions in agriculture can be achieved.

Suggested Citation

  • Lu Liu & Jun Zhang & Yifan Chen & Ze Guo & Ganzhan Xu & Linlin Yin & Yu Tian & Stevo Lavrnić, 2023. "Anaerobic Fluidized-Bed Membrane Bioreactor for Treatment of Liquid Fraction of Sludge Digestate: Performance and Agricultural Reuse Analysis," Sustainability, MDPI, vol. 15(9), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7698-:d:1141769
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7698/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7698/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhen, Guangyin & Lu, Xueqin & Kato, Hiroyuki & Zhao, Youcai & Li, Yu-You, 2017. "Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 559-577.
    2. Zhen, Guangyin & Lu, Xueqin & Li, Yu-You & Zhao, Youcai, 2014. "Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion," Applied Energy, Elsevier, vol. 128(C), pages 93-102.
    3. Chowdhury, M.M.I. & Nakhla, G. & Zhu, J., 2017. "Ultrasonically enhanced anaerobic digestion of thickened waste activated sludge using fluidized bed reactors," Applied Energy, Elsevier, vol. 204(C), pages 807-818.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwijin Seo & Anna Joicy & Myoung Eun Lee & Chaeyoung Rhee & Seung Gu Shin & Si-Kyung Cho & Yongtae Ahn, 2023. "Development of a Primary Sewage Sludge Pretreatment Strategy Using a Combined Alkaline–Ultrasound Pretreatment for Enhancing Microbial Electrolysis Cell Performance," Energies, MDPI, vol. 16(10), pages 1-14, May.
    2. Zhen, Guangyin & Pan, Yang & Lu, Xueqin & Li, Yu-You & Zhang, Zhongyi & Niu, Chengxin & Kumar, Gopalakrishnan & Kobayashi, Takuro & Zhao, Youcai & Xu, Kaiqin, 2019. "Anaerobic membrane bioreactor towards biowaste biorefinery and chemical energy harvest: Recent progress, membrane fouling and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Çelebi, Emrehan Berkay & Aksoy, Ayşegül & Sanin, F. Dilek, 2021. "Maximizing the energy potential of urban sludge treatment: An experimental study and a scenario-based energy analysis focusing on anaerobic digestion with ultrasound pretreatment and sludge combustion," Energy, Elsevier, vol. 221(C).
    4. Wang, Hui & Zeng, Shufang & Pan, Xiaoli & Liu, Lei & Chen, Yunjie & Tang, Jiawei & Luo, Feng, 2022. "Bioelectrochemically assisting anaerobic digestion enhanced methane production under low-temperature," Renewable Energy, Elsevier, vol. 194(C), pages 1071-1083.
    5. Zhen, Guangyin & Lu, Xueqin & Kato, Hiroyuki & Zhao, Youcai & Li, Yu-You, 2017. "Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 559-577.
    6. Justyna Górka & Małgorzata Cimochowicz-Rybicka & Dominika Poproch, 2022. "Sludge Management at the Kraków-Płaszów WWTP—Case Study," Sustainability, MDPI, vol. 14(13), pages 1-11, June.
    7. Huang, Bao-Cheng & He, Chuan-Shu & Fan, Nian-Si & Jin, Ren-Cun & Yu, Han-Qing, 2020. "Envisaging wastewater-to-energy practices for sustainable urban water pollution control: Current achievements and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    9. Chen, Yi-di & Li, Suping & Ho, Shih-Hsin & Wang, Chengyu & Lin, Yen-Chang & Nagarajan, Dillirani & Chang, Jo-Shu & Ren, Nan-qi, 2018. "Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 76-90.
    10. Siwal, Samarjeet Singh & Zhang, Qibo & Devi, Nishu & Saini, Adesh Kumar & Saini, Vipin & Pareek, Bhawna & Gaidukovs, Sergejs & Thakur, Vijay Kumar, 2021. "Recovery processes of sustainable energy using different biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Aneta Kowalska & Anna Grobelak & Åsgeir R. Almås & Bal Ram Singh, 2020. "Effect of Biowastes on Soil Remediation, Plant Productivity and Soil Organic Carbon Sequestration: A Review," Energies, MDPI, vol. 13(21), pages 1-24, November.
    12. Wang, Xuezhi & Lei, Zhongfang & Shimizu, Kazuya & Zhang, Zhenya & Lee, Duu-Jong, 2021. "Recent advancements in nanobubble water technology and its application in energy recovery from organic solid wastes towards a greater environmental friendliness of anaerobic digestion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Tong, Huanhuan & Yao, Zhiyi & Lim, Jun Wei & Mao, Liwei & Zhang, Jingxing & Ge, Tian Shu & Peng, Ying Hong & Wang, Chi-Hwa & Tong, Yen Wah, 2018. "Harvest green energy through energy recovery from waste: A technology review and an assessment of Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 163-178.
    14. Lübken, Manfred & Koch, Konrad & Gehring, Tito & Horn, Harald & Wichern, Marc, 2015. "Parameter estimation and long-term process simulation of a biogas reactor operated under trace elements limitation," Applied Energy, Elsevier, vol. 142(C), pages 352-360.
    15. Tae-Hoon Kim & Dayeong Song & Jung-Sup Lee & Yeo-Myeong Yun, 2023. "Enhanced Methane Production from Pretreatment of Waste Activated Sludge by Economically Feasible Biocatalysts," Energies, MDPI, vol. 16(1), pages 1-11, January.
    16. Agnieszka Garlicka & Monika Zubrowska-Sudol & Katarzyna Umiejewska & Otton Roubinek & Jacek Palige & Andrzej Chmielewski, 2020. "Effects of Thickened Excess Sludge Pre-Treatment Using Hydrodynamic Cavitation for Anaerobic Digestion," Energies, MDPI, vol. 13(10), pages 1-15, May.
    17. Meng, Xingyao & Wang, Qingping & Zhao, Xixi & Cai, Yafan & Ma, Xuguang & Fu, Jingyi & Wang, Pan & Wang, Yongjing & Liu, Wei & Ren, Lianhai, 2023. "A review of the technologies used for preserving anaerobic digestion inoculum," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Kossińska, Nina & Krzyżyńska, Renata & Ghazal, Heba & Jouhara, Hussam, 2023. "Hydrothermal carbonisation of sewage sludge and resulting biofuels as a sustainable energy source," Energy, Elsevier, vol. 275(C).
    19. Mahsa Nabizadeh Mashizi & Mohammad Hossein Bagheripour & Mohammad Mostafa Jafari & Ehsan Yaghoubi, 2023. "Mechanical and Microstructural Properties of a Stabilized Sand Using Geopolymer Made of Wastes and a Natural Pozzolan," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    20. Wu, Wei & Chen, Guang & Wang, Zhiwei, 2022. "Enhanced sludge digestion using anaerobic dynamic membrane bioreactor: Effects of hydraulic retention time," Energy, Elsevier, vol. 261(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7698-:d:1141769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.