IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5409-d1195171.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Sustainable Utilization of Biowaste Resources for Biogas Production to Meet Rural Bioenergy Requirements

Author

Listed:
  • Akhilesh Kumar Singh

    (Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India)

  • Priti Pal

    (Department of Civil Engineering, Shri Ramswaroop Memorial College of Engineering & Management, Tewariganj, Faizabad, Road, Lucknow 226028, India)

  • Saurabh Singh Rathore

    (Department of Life Sciences, Inter University Centre for Teacher Education, Banaras Hindu University, Varanasi 221005, India)

  • Uttam Kumar Sahoo

    (Department of Forestry, Mizoram University, Aizawl 796004, India)

  • Prakash Kumar Sarangi

    (College of Agriculture, Central Agricultural University, Imphal 795004, India)

  • Piotr Prus

    (Department of Agronomy, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland)

  • Paweł Dziekański

    (Department of Economics and Finance, Jan Kochanowski University in Kielce, 25-369 Kielce, Poland)

Abstract

Since the impending warning of fossil fuel inadequacy, researchers’ focus has shifted to alternative fuel generation. This resulted in the use of a wide variety of renewable biomass sources for making biofuels. Biofuels made from biomass are seen as the most promising long-term strategy for addressing issues associated with conventional energy sources, atypical climate change, and greenhouse gas emissions. Hydrocarbons may be efficiently extracted from biomass, which contains a lot of sugars. Biofuels including bioethanol, biodiesel, biohydrogen, and biogas can be produced from biomass for widespread usage in transportation, industry, and households. In recent years, there have been numerous reports of breakthroughs in the manufacturing of biofuels and biogas. This paper examines the big picture of biogas generation, with an emphasis on the many forms of biomass utilization in both commercial and residential settings in rural areas.

Suggested Citation

  • Akhilesh Kumar Singh & Priti Pal & Saurabh Singh Rathore & Uttam Kumar Sahoo & Prakash Kumar Sarangi & Piotr Prus & Paweł Dziekański, 2023. "Sustainable Utilization of Biowaste Resources for Biogas Production to Meet Rural Bioenergy Requirements," Energies, MDPI, vol. 16(14), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5409-:d:1195171
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5409/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5409/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chodkowska-Miszczuk, J. & Martinát, S. & van der Horst, D., 2021. "Changes in feedstocks of rural anaerobic digestion plants: External drivers towards a circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Khalil, Munawar & Berawi, Mohammed Ali & Heryanto, Rudi & Rizalie, Akhmad, 2019. "Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 323-331.
    3. Chen, Hong & Yi, Hao & Li, Hechao & Guo, Xuesong & Xiao, Benyi, 2020. "Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: Performance, energy balance and, enhancement mechanism," Renewable Energy, Elsevier, vol. 147(P1), pages 2409-2416.
    4. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Patel, Anil & Juneja, Ankita & Singh, Rajendra Prasad & Yan, Binghua & Awasthi, Sanjeev Kumar & Jain, Archana & Liu, Tao & Duan, Yumin & Pandey, Ashok & Zh, 2020. "Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    5. Kamalimeera, N. & Kirubakaran, V., 2021. "Prospects and restraints in biogas fed SOFC for rural energization: A critical review in indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Rufis Fregue Tiegam Tagne & Xiaobin Dong & Solomon G. Anagho & Serena Kaiser & Sergio Ulgiati, 2021. "Technologies, challenges and perspectives of biogas production within an agricultural context. The case of China and Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14799-14826, October.
    7. Khoshnevisan, Benyamin & Duan, Na & Tsapekos, Panagiotis & Awasthi, Mukesh Kumar & Liu, Zhidan & Mohammadi, Ali & Angelidaki, Irini & Tsang, Daniel CW. & Zhang, Zengqiang & Pan, Junting & Ma, Lin & Ag, 2021. "A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Monlau, Florian & Latrille, Eric & Da Costa, Aline Carvalho & Steyer, Jean-Philippe & Carrère, Hélène, 2013. "Enhancement of methane production from sunflower oil cakes by dilute acid pretreatment," Applied Energy, Elsevier, vol. 102(C), pages 1105-1113.
    9. Gheorghe Lazaroiu & Lucian Mihaescu & Gabriel Negreanu & Constantin Pana & Ionel Pisa & Alexandru Cernat & Dana-Alexandra Ciupageanu, 2018. "Experimental Investigations of Innovative Biomass Energy Harnessing Solutions," Energies, MDPI, vol. 11(12), pages 1-18, December.
    10. Martí-Herrero, J. & Soria-Castellón, G. & Diaz-de-Basurto, A. & Alvarez, R. & Chemisana, D., 2019. "Biogas from a full scale digester operated in psychrophilic conditions and fed only with fruit and vegetable waste," Renewable Energy, Elsevier, vol. 133(C), pages 676-684.
    11. John J. Milledge & Birthe V. Nielsen & Supattra Maneein & Patricia J. Harvey, 2019. "A Brief Review of Anaerobic Digestion of Algae for Bioenergy," Energies, MDPI, vol. 12(6), pages 1-22, March.
    12. Nathaniel Sawyerr & Cristina Trois & Tilahun Workneh & Vincent Okudoh, 2019. "An Overview of Biogas Production: Fundamentals, Applications and Future Research," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 105-116.
    13. Abdel daiem, Mahmoud M. & Hatata, Ahmed & Said, Noha, 2022. "Modeling and optimization of semi-continuous anaerobic co-digestion of activated sludge and wheat straw using Nonlinear Autoregressive Exogenous neural network and seagull algorithm," Energy, Elsevier, vol. 241(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prakash Kumar Sarangi & Rajesh Kumar Srivastava & Akhilesh Kumar Singh & Uttam Kumar Sahoo & Piotr Prus & Paweł Dziekański, 2023. "The Utilization of Jackfruit ( Artocarpus heterophyllus L.) Waste towards Sustainable Energy and Biochemicals: The Attainment of Zero-Waste Technologies," Sustainability, MDPI, vol. 15(16), pages 1-30, August.
    2. Moritz Pollack & Andrea Lück & Mario Wolf & Eckhard Kraft & Conrad Völker, 2023. "Energy and Business Synergy: Leveraging Biogenic Resources from Agriculture, Waste, and Wastewater in German Rural Areas," Sustainability, MDPI, vol. 15(24), pages 1-26, December.
    3. Joanna Szulc & Błażej Błaszak & Anna Wenda-Piesik & Grażyna Gozdecka & Ewa Żary-Sikorska & Małgorzata Bąk & Justyna Bauza-Kaszewska, 2023. "Zero Waste Technology of Soybeans Processing," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
    4. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    5. Pasawat Sanchumpu & Wiriya Suaili & Siwakorn Nonsawang & Chaiyan Junsiri & Peeranat Ansuree & Kittipong Laloon, 2024. "Biomass Pellet Processing from Sugar Industry Byproducts: A Study on Pelletizing Behavior and Energy Usage," Sustainability, MDPI, vol. 16(14), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).
    2. Awasthi, Mukesh Kumar & Sindhu, Raveendran & Sirohi, Ranjna & Kumar, Vinod & Ahluwalia, Vivek & Binod, Parameswaran & Juneja, Ankita & Kumar, Deepak & Yan, Binghua & Sarsaiya, Surendra & Zhang, Zengqi, 2022. "Agricultural waste biorefinery development towards circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Awasthi, Mukesh Kumar & Singh, Ekta & Binod, Parameswaran & Sindhu, Raveendran & Sarsaiya, Surendra & Kumar, Aman & Chen, Hongyu & Duan, Yumin & Pandey, Ashok & Kumar, Sunil & Taherzadeh, Mohammad J. , 2022. "Biotechnological strategies for bio-transforming biosolid into resources toward circular bio-economy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Khan, Feroz & Ali, Yousaf, 2022. "Moving towards a sustainable circular bio-economy in the agriculture sector of a developing country," Ecological Economics, Elsevier, vol. 196(C).
    5. G. Venkatesh, 2022. "Circular Bio-economy—Paradigm for the Future: Systematic Review of Scientific Journal Publications from 2015 to 2021," Circular Economy and Sustainability,, Springer.
    6. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    7. Yu, Xinhui & Yan, Lei & Wang, Haipeng & Bi, Shaojie & Zhang, Futao & Huang, Sisi & Wang, Yanhong & Wang, Yanjie, 2024. "Anaerobic co-digestion of cabbage waste and cattle manure: Effect of mixing ratio and hydraulic retention time," Renewable Energy, Elsevier, vol. 221(C).
    8. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    9. Rahul Kadam & Sangyeol Jo & Jonghwa Lee & Kamonwan Khanthong & Heewon Jang & Jungyu Park, 2024. "A Review on the Anaerobic Co-Digestion of Livestock Manures in the Context of Sustainable Waste Management," Energies, MDPI, vol. 17(3), pages 1-27, January.
    10. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Yue Jiang & Yue Zhang & Hong Li, 2023. "Research Progress and Analysis on Comprehensive Utilization of Livestock and Poultry Biogas Slurry as Agricultural Resources," Agriculture, MDPI, vol. 13(12), pages 1-17, November.
    12. Tiago Florindo & Ana I. Ferraz & Ana C. Rodrigues & Leonel J. R. Nunes, 2022. "Residual Biomass Recovery in the Wine Sector: Creation of Value Chains for Vine Pruning," Agriculture, MDPI, vol. 12(5), pages 1-18, May.
    13. Gupta, Aditi & Kumar, Ashwani & Sharma, Satyawati & Vijay, V.K., 2013. "Comparative evaluation of raw and detoxified mahua seed cake for biogas production," Applied Energy, Elsevier, vol. 102(C), pages 1514-1521.
    14. Triolo, Jin M. & Ward, Alastair J. & Pedersen, Lene & Løkke, Mette M. & Qu, Haiyan & Sommer, Sven G., 2014. "Near Infrared Reflectance Spectroscopy (NIRS) for rapid determination of biochemical methane potential of plant biomass," Applied Energy, Elsevier, vol. 116(C), pages 52-57.
    15. Yuan Luo & Xiangzhuo Meng & Yuan Liu & Kokyo Oh & Hongyan Cheng, 2023. "Using Time-to-Event Model in Seed Germination Test to Evaluate Maturity during Cow Dung Composting," Sustainability, MDPI, vol. 15(5), pages 1-9, February.
    16. Abdur Rawoof, Salma Aathika & Kumar, P. Senthil & Vo, Dai-Viet N. & Devaraj, Thiruselvi & Subramanian, Sivanesan, 2021. "Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    17. Arezoo Ghazanfari, 2023. "An Analysis of Circular Economy Literature at the Macro Level, with a Particular Focus on Energy Markets," Energies, MDPI, vol. 16(4), pages 1-24, February.
    18. Ester Scotto di Perta & Raffaele Grieco & Stefano Papirio & Giovanni Esposito & Elena Cervelli & Marco Bovo & Stefania Pindozzi, 2023. "Ammonia Air Stripping from Different Livestock Effluents Prior to and after Anaerobic Digestion," Sustainability, MDPI, vol. 15(12), pages 1-10, June.
    19. Katarzyna Ignatowicz & Gabriel Filipczak & Barbara Dybek & Grzegorz Wałowski, 2023. "Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples," Energies, MDPI, vol. 16(2), pages 1-17, January.
    20. Costantini, Michele & Provolo, Giorgio & Bacenetti, Jacopo, 2024. "The effects of incorporating renewable energy into the environmental footprint of beef production," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5409-:d:1195171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.