IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1031-d1595736.html
   My bibliography  Save this article

The Synergy Potential of Energy and Agriculture—The Main Directions of Development

Author

Listed:
  • Mantas Svazas

    (Faculty of Bioeconomy Development, Vytautas Magnus University, 44248 Kaunas, Lithuania
    Department of Economics, Lithuania Business College, 91249 Klaipėda, Lithuania)

  • Valentinas Navickas

    (Department of Economics, Lithuania Business College, 91249 Klaipėda, Lithuania)

Abstract

The development of renewable energy is increasingly blurring the line between the energy and agricultural sectors. Decarbonizing agriculture is essential for the development of sustainable development principles. This can be achieved in essentially the two following ways: by reducing fuel consumption and by making the livestock sector more efficient. This review sets out options for contributing to these two elements. The review sets the stage for a smoother synergy process, whereby waste generated in agriculture is fully utilized to strengthen farms. In conducting the review, the methods of scientific induction and deduction were used. One of the key elements is the recycling of the waste generated into biomethane. This biomethane in turn is used as a fuel for tractors and as a means of providing energy for farms. The production of biomethane or biogas can lead to decentralization of the energy system, with farms becoming less or completely independent from external energy supplies. At the same time, synergies with other forms of energy are being created. These make it possible to increase the income of farms by adding a new activity of supplying energy to other consumers.

Suggested Citation

  • Mantas Svazas & Valentinas Navickas, 2025. "The Synergy Potential of Energy and Agriculture—The Main Directions of Development," Energies, MDPI, vol. 18(5), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1031-:d:1595736
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1031/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1031/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Noussan, Michel & Negro, Viviana & Prussi, Matteo & Chiaramonti, David, 2024. "The potential role of biomethane for the decarbonization of transport: An analysis of 2030 scenarios in Italy," Applied Energy, Elsevier, vol. 355(C).
    2. Valle, B. & Simonneau, T. & Sourd, F. & Pechier, P. & Hamard, P. & Frisson, T. & Ryckewaert, M. & Christophe, A., 2017. "Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops," Applied Energy, Elsevier, vol. 206(C), pages 1495-1507.
    3. Kamila Klimek & Magdalena Kapłan & Serhiy Syrotyuk & Nikolay Bakach & Nikolay Kapustin & Ryszard Konieczny & Jakub Dobrzyński & Kinga Borek & Dorota Anders & Barbara Dybek & Agnieszka Karwacka & Grzeg, 2021. "Investment Model of Agricultural Biogas Plants for Individual Farms in Poland," Energies, MDPI, vol. 14(21), pages 1-30, November.
    4. Jan, Inayatullah & Akram, Waqar, 2018. "Willingness of rural communities to adopt biogas systems in Pakistan: Critical factors and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3178-3185.
    5. Dariusz Kusz & Bożena Kusz & Ludwik Wicki & Tomasz Nowakowski & Ryszard Kata & Władysław Brejta & Anna Kasprzyk & Marek Barć, 2024. "The Economic Efficiencies of Investment in Biogas Plants—A Case Study of a Biogas Plant Using Waste from a Dairy Farm in Poland," Energies, MDPI, vol. 17(15), pages 1-23, July.
    6. Liu, Xuyi & Zhang, Shun & Bae, Junghan, 2017. "The nexus of renewable energy-agriculture-environment in BRICS," Applied Energy, Elsevier, vol. 204(C), pages 489-496.
    7. Gulnar Gadirli & Agnieszka A. Pilarska & Jacek Dach & Krzysztof Pilarski & Alicja Kolasa-Więcek & Klaudia Borowiak, 2024. "Fundamentals, Operation and Global Prospects for the Development of Biogas Plants—A Review," Energies, MDPI, vol. 17(3), pages 1-26, January.
    8. Rahman, Md Momtazur & Khan, Imran & Field, David Luke & Techato, Kuaanan & Alameh, Kamal, 2022. "Powering agriculture: Present status, future potential, and challenges of renewable energy applications," Renewable Energy, Elsevier, vol. 188(C), pages 731-749.
    9. Abbas Ali Chandio & Yuansheng Jiang & Abdul Rauf & Amir Ali Mirani & Rashid Usman Shar & Fayyaz Ahmad & Khurram Shehzad, 2019. "Does Energy-Growth and Environment Quality Matter for Agriculture Sector in Pakistan or not? An Application of Cointegration Approach," Energies, MDPI, vol. 12(10), pages 1-17, May.
    10. Yazan, Devrim Murat & Fraccascia, Luca & Mes, Martijn & Zijm, Henk, 2018. "Cooperation in manure-based biogas production networks: An agent-based modeling approach," Applied Energy, Elsevier, vol. 212(C), pages 820-833.
    11. Kougias, Ioannis & Szabó, Sándor & Monforti-Ferrario, Fabio & Huld, Thomas & Bódis, Katalin, 2016. "A methodology for optimization of the complementarity between small-hydropower plants and solar PV systems," Renewable Energy, Elsevier, vol. 87(P2), pages 1023-1030.
    12. Dalia Streimikiene & Tomas Baležentis & Artiom Volkov & Mangirdas Morkūnas & Agnė Žičkienė & Justas Streimikis, 2021. "Barriers and Drivers of Renewable Energy Penetration in Rural Areas," Energies, MDPI, vol. 14(20), pages 1-28, October.
    13. Galyna Trypolska & Sergii Kyryziuk & Vitaliy Krupin & Adam Wąs & Roman Podolets, 2021. "Economic Feasibility of Agricultural Biogas Production by Farms in Ukraine," Energies, MDPI, vol. 15(1), pages 1-23, December.
    14. Justin B. Winikoff & Dominic P. Parker, 2024. "Farm size, spatial externalities, and wind energy development," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(4), pages 1518-1543, August.
    15. Muñoz, P. & González-Menorca, C. & Sánchez-Vázquez, R. & Sanchez-Prieto, J. & Fraile Del Pozo, A., 2024. "Determining biomethane potential from animal-source industry wastes by anaerobic digestion: A case study from La rioja, Spain," Renewable Energy, Elsevier, vol. 235(C).
    16. Akhilesh Kumar Singh & Priti Pal & Saurabh Singh Rathore & Uttam Kumar Sahoo & Prakash Kumar Sarangi & Piotr Prus & Paweł Dziekański, 2023. "Sustainable Utilization of Biowaste Resources for Biogas Production to Meet Rural Bioenergy Requirements," Energies, MDPI, vol. 16(14), pages 1-22, July.
    17. Li, Xiang & Cao, Yuying & Yu, Xin & Xu, Yuhong & Yang, Yanfei & Liu, Shiming & Cheng, Tinghai & Wang, Zhong Lin, 2022. "Breeze-driven triboelectric nanogenerator for wind energy harvesting and application in smart agriculture," Applied Energy, Elsevier, vol. 306(PA).
    18. Xiang, Pianpian & Jiang, Kejun & Wang, Jiachen & He, Chenmin & Chen, Sha & Jiang, Weiyi, 2024. "Evaluation of LCOH of conventional technology, energy storage coupled solar PV electrolysis, and HTGR in China," Applied Energy, Elsevier, vol. 353(PA).
    19. Sebri, Maamar & Abid, Mehdi, 2012. "Energy use for economic growth: A trivariate analysis from Tunisian agriculture sector," Energy Policy, Elsevier, vol. 48(C), pages 711-716.
    20. Oliveira, Helena Rodrigues & Kozlowsky-Suzuki, Betina & Björn, Annika & Shakeri Yekta, Sepehr & Caetano, Cristiane Fonseca & Pinheiro, Érika Flávia Machado & Marotta, Humberto & Bassin, João Paulo & O, 2024. "Biogas potential of biowaste: A case study in the state of Rio de Janeiro, Brazil," Renewable Energy, Elsevier, vol. 221(C).
    21. Ali, Qamar & Raza, Ali & Narjis, Saadia & Saeed, Sahrish & Khan, Muhammad Tariq Iqbal, 2020. "Potential of renewable energy, agriculture, and financial sector for the economic growth: Evidence from politically free, partly free and not free countries," Renewable Energy, Elsevier, vol. 162(C), pages 934-947.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph Phiri & Karel Malec & Alpo Kapuka & Mansoor Maitah & Seth Nana Kwame Appiah-Kubi & Zdeňka Gebeltová & Mwila Bowa & Kamil Maitah, 2021. "Impact of Agriculture and Energy on CO 2 Emissions in Zambia," Energies, MDPI, vol. 14(24), pages 1-13, December.
    2. Mattia Iotti & Elisa Manghi & Giuseppe Bonazzi, 2024. "Debt Sustainability Assessment in the Biogas Sector: Application of Interest Coverage Ratios in a Sample of Agricultural Firms in Italy," Energies, MDPI, vol. 17(6), pages 1-34, March.
    3. Chopdar, R.K. & Sengar, N. & Giri, Nimay Chandra & Halliday, D., 2024. "Comprehensive review on agrivoltaics with technical, environmental and societal insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    4. Dariusz Kusz & Iwona Bąk & Beata Szczecińska & Ludwik Wicki & Bożena Kusz, 2022. "Determinants of Return-on-Equity (ROE) of Biogas Plants Operating in Poland," Energies, MDPI, vol. 16(1), pages 1-22, December.
    5. Błażej Suproń & Janusz Myszczyszyn, 2024. "Impact of Renewable and Non-Renewable Energy Consumption on the Production of the Agricultural Sector in the European Union," Energies, MDPI, vol. 17(15), pages 1-22, July.
    6. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    7. Jurasz, Jakub & Beluco, Alexandre & Canales, Fausto A., 2018. "The impact of complementarity on power supply reliability of small scale hybrid energy systems," Energy, Elsevier, vol. 161(C), pages 737-743.
    8. Vadim Manusov & Svetlana Beryozkina & Muso Nazarov & Murodbek Safaraliev & Inga Zicmane & Pavel Matrenin & Anvari Ghulomzoda, 2022. "Optimal Management of Energy Consumption in an Autonomous Power System Considering Alternative Energy Sources," Mathematics, MDPI, vol. 10(3), pages 1-17, February.
    9. Krexner, T. & Bauer, A. & Gronauer, A. & Mikovits, C. & Schmidt, J. & Kral, I., 2024. "Environmental life cycle assessment of a stilted and vertical bifacial crop-based agrivoltaic multi land-use system and comparison with a mono land-use of agricultural land," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    10. Zhao, Kun & Song, Zhenhua & Sun, Wanru & Gao, Wei & Guo, Junhong & Zhang, Kewei, 2024. "Flexible neodymium iron boron/polyvinyl chloride (Nd2Fe14B/PVC) composite film based hybrid nanogenerator for efficient mechanical energy harvesting," Energy, Elsevier, vol. 300(C).
    11. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    12. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).
    13. Ayadi, Osama & Al-Bakri, Jawad T. & Abdalla, Mohammed E.B. & Aburumman, Qasim, 2024. "The potential of agrivoltaic systems in Jordan," Applied Energy, Elsevier, vol. 372(C).
    14. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    15. Regmi, Rupesh & Zhang, Zhuo & Zhang, Hongpeng, 2023. "Entrepreneurship strategy, natural resources management and sustainable performance: A study of an emerging market," Resources Policy, Elsevier, vol. 86(PB).
    16. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    17. Mary O. Agboola & Festus V. Bekun, 2019. "Does Agricultural Value Added Induce Environmental Degradation? Empirical Evidence from an Agrarian Country," CEREDEC Working Papers 19/040, Centre de Recherche pour le Développement Economique (CEREDEC).
    18. Gonocruz, Ruth Anne Tanlioco & Yoshida, Yoshikuni & Ozawa, Akito & Aguirre, Rodolfo A. & Maguindayao, Edward Joseph H., 2023. "Impacts of agrivoltaics in rural electrification and decarbonization in the Philippines," Applied Energy, Elsevier, vol. 350(C).
    19. Poonia, Surendra & Jat, N.K. & Santra, Priyabrata & Singh, A.K. & Jain, Dilip & Meena, H.M., 2022. "Techno-economic evaluation of different agri-voltaic designs for the hot arid ecosystem India," Renewable Energy, Elsevier, vol. 184(C), pages 149-163.
    20. Jurasz, Jakub & Ciapała, Bartłomiej, 2017. "Integrating photovoltaics into energy systems by using a run-off-river power plant with pondage to smooth energy exchange with the power gird," Applied Energy, Elsevier, vol. 198(C), pages 21-35.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1031-:d:1595736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.