IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v306y2022ipas0306261921012812.html
   My bibliography  Save this article

Breeze-driven triboelectric nanogenerator for wind energy harvesting and application in smart agriculture

Author

Listed:
  • Li, Xiang
  • Cao, Yuying
  • Yu, Xin
  • Xu, Yuhong
  • Yang, Yanfei
  • Liu, Shiming
  • Cheng, Tinghai
  • Wang, Zhong Lin

Abstract

Smart agriculture is becoming an inevitable trend with the wide application of sensor networks. To supply energy for agricultural sensors, the wind energy harvester supports a possible solution. However, the average wind speed on the earth surface is only 3.28 m/s, which cannot easily be harvested by traditional generators efficiently. To efficiently harvest breeze energy in the farmland environment, a breeze-driven triboelectric nanogenerator (BD-TENG) was proposed. By selecting lightweight rotor materials and designing suitable wind scoops structures, the start-up wind speed of BD-TENG is as low as 3.3 m/s, and when the wind speed is 4 m/s, the energy conversion efficiency of the BD-TENG can reach 12.06%. Moreover, under 4 m/s wind speed, the output performance of the BD-TENG is 330 V, 7 μA, 137 nC, and the peak power is 2.81 mW. So, the BD-TENG is easier to operate normally even in low wind speed environments and can harvest natural breeze energy efficiently. Experiments prove that in natural environments, the BD-TENG successfully lights up 300 red and blue light-emitting diodes in series, which can be applied to increase lighting time for plants at night. Moreover, the BD-TENG can power a soil thermometer by harvesting natural breeze energy. Therefore, the BD-TENG can be widely used in farmland environments to provide energy for agricultural sensor networks. The BD-TENG has bright prospects in smart agriculture and can promote its sustainable development.

Suggested Citation

  • Li, Xiang & Cao, Yuying & Yu, Xin & Xu, Yuhong & Yang, Yanfei & Liu, Shiming & Cheng, Tinghai & Wang, Zhong Lin, 2022. "Breeze-driven triboelectric nanogenerator for wind energy harvesting and application in smart agriculture," Applied Energy, Elsevier, vol. 306(PA).
  • Handle: RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921012812
    DOI: 10.1016/j.apenergy.2021.117977
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921012812
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Chen & Lai, Siu-Kai & Wang, Jia-Mei & Feng, Jing-Jing & Ni, Yi-Qing, 2021. "An ultra-low-frequency, broadband and multi-stable tri-hybrid energy harvester for enabling the next-generation sustainable power," Applied Energy, Elsevier, vol. 291(C).
    2. Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).
    3. Haiyang Zou & Ying Zhang & Litong Guo & Peihong Wang & Xu He & Guozhang Dai & Haiwu Zheng & Chaoyu Chen & Aurelia Chi Wang & Cheng Xu & Zhong Lin Wang, 2019. "Quantifying the triboelectric series," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Zhai, Cong & Chou, Xiujian & He, Jian & Song, Linlin & Zhang, Zengxing & Wen, Tao & Tian, Zhumei & Chen, Xi & Zhang, Wendong & Niu, Zhichuan & Xue, Chenyang, 2018. "An electrostatic discharge based needle-to-needle booster for dramatic performance enhancement of triboelectric nanogenerators," Applied Energy, Elsevier, vol. 231(C), pages 1346-1353.
    5. Wolfert, Sjaak & Ge, Lan & Verdouw, Cor & Bogaardt, Marc-Jeroen, 2017. "Big Data in Smart Farming – A review," Agricultural Systems, Elsevier, vol. 153(C), pages 69-80.
    6. Khandelwal, Gaurav & Chandrasekhar, Arunkumar & Alluri, Nagamalleswara Rao & Vivekananthan, Venkateswaran & Maria Joseph Raj, Nirmal Prashanth & Kim, Sang-Jae, 2018. "Trash to energy: A facile, robust and cheap approach for mitigating environment pollutant using household triboelectric nanogenerator," Applied Energy, Elsevier, vol. 219(C), pages 338-349.
    7. Carneiro, Pedro & Soares dos Santos, Marco P. & Rodrigues, André & Ferreira, Jorge A.F. & Simões, José A.O. & Marques, A. Torres & Kholkin, Andrei L., 2020. "Electromagnetic energy harvesting using magnetic levitation architectures: A review," Applied Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Shun & Zhao, Liya, 2023. "A quasi-zero stiffness two degree-of-freedom nonlinear galloping oscillator for ultra-low wind speed aeroelastic energy harvesting," Applied Energy, Elsevier, vol. 331(C).
    2. Wang, Xinxian & Gao, Qi & Zhu, Mingkang & Wang, Jianlong & Zhu, Jianyang & Zhao, Hongwei & Wang, Zhong Lin & Cheng, Tinghai, 2022. "Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting," Applied Energy, Elsevier, vol. 323(C).
    3. Nitin Satpute & Marek Iwaniec & Joanna Iwaniec & Manisha Mhetre & Swapnil Arawade & Siddharth Jabade & Marian Banaś, 2023. "Triboelectric Nanogenerator-Based Vibration Energy Harvester Using Bio-Inspired Microparticles and Mechanical Motion Amplification," Energies, MDPI, vol. 16(3), pages 1-22, January.
    4. Fan, Kangqi & Chen, Chenggen & Zhang, Baosen & Li, Xiang & Wang, Zhen & Cheng, Tinghai & Lin Wang, Zhong, 2022. "Robust triboelectric-electromagnetic hybrid nanogenerator with maglev-enabled automatic mode transition for exploiting breeze energy," Applied Energy, Elsevier, vol. 328(C).
    5. Qi, Youchao & Kuang, Yang & Liu, Yaoyao & Liu, Guoxu & Zeng, Jianhua & Zhao, Junqing & Wang, Lu & Zhu, Meiling & Zhang, Chi, 2022. "Kirigami-inspired triboelectric nanogenerator as ultra-wide-band vibrational energy harvester and self-powered acceleration sensor," Applied Energy, Elsevier, vol. 327(C).
    6. Çelebi, Samet & Kocakulak, Tolga & Demir, Usame & Ergen, Gökhan & Yilmaz, Emre, 2023. "Optimizing the effect of a mixture of light naphtha, diesel and gasoline fuels on engine performance and emission values on an HCCI engine," Applied Energy, Elsevier, vol. 330(PB).
    7. Mai, Van-Phung & Lee, Tsung-Yu & Yang, Ruey-Jen, 2022. "Enhanced-performance droplet-triboelectric nanogenerators with composite polymer films and electrowetting-assisted charge injection," Energy, Elsevier, vol. 260(C).
    8. Zhu, Mingkang & Zhang, Jiacheng & Wang, Zhaohui & Yu, Xin & Zhang, Yuejun & Zhu, Jianyang & Wang, Zhong Lin & Cheng, Tinghai, 2022. "Double-blade structured triboelectric–electromagnetic hybrid generator with aerodynamic enhancement for breeze energy harvesting," Applied Energy, Elsevier, vol. 326(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Yanqiang & Wang, Xiaoli & Qin, Yechen & Li, Zhihao & Wang, Chenfei & Wu, Heng, 2022. "A robust hybrid generator for harvesting vehicle suspension vibration energy from random road excitation," Applied Energy, Elsevier, vol. 309(C).
    2. Kınas, Zeynep & Karabiber, Abdulkerim & Yar, Adem & Ozen, Abdurrahman & Ozel, Faruk & Ersöz, Mustafa & Okbaz, Abdulkerim, 2022. "High-performance triboelectric nanogenerator based on carbon nanomaterials functionalized polyacrylonitrile nanofibers," Energy, Elsevier, vol. 239(PD).
    3. Li, Xiang & Gao, Qi & Cao, Yuying & Yang, Yanfei & Liu, Shiming & Wang, Zhong Lin & Cheng, Tinghai, 2022. "Optimization strategy of wind energy harvesting via triboelectric-electromagnetic flexible cooperation," Applied Energy, Elsevier, vol. 307(C).
    4. Han, Minglei & Yang, Xu & Wang, Dong F. & Jiang, Lei & Song, Wei & Ono, Takahito, 2022. "A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations," Applied Energy, Elsevier, vol. 315(C).
    5. Hu, Guobiao & Zhao, Chaoyang & Yang, Yaowen & Li, Xin & Liang, Junrui, 2022. "Triboelectric energy harvesting using an origami-inspired structure," Applied Energy, Elsevier, vol. 306(PB).
    6. Yang, Xin & Lai, Siu-Kai & Wang, Chen & Wang, Jia-Mei & Ding, Hu, 2022. "On a spring-assisted multi-stable hybrid-integrated vibration energy harvester for ultra-low-frequency excitations," Energy, Elsevier, vol. 252(C).
    7. Ebrahimian, Fariba & Kabirian, Zohre & Younesian, Davood & Eghbali, Pezhman, 2021. "Auxetic clamped-clamped resonators for high-efficiency vibration energy harvesting at low-frequency excitation," Applied Energy, Elsevier, vol. 295(C).
    8. Lin Xie & Biliang Luo & Wenjing Zhong, 2021. "How Are Smallholder Farmers Involved in Digital Agriculture in Developing Countries: A Case Study from China," Land, MDPI, vol. 10(3), pages 1-16, March.
    9. Liu, Mengzhou & Zhang, Yuan & Fu, Hailing & Qin, Yong & Ding, Ao & Yeatman, Eric M., 2023. "A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring," Applied Energy, Elsevier, vol. 337(C).
    10. Oliver Falck & Johannes Koenen, 2020. "Rohstoff „Daten“: Volkswirtschaflicher Nutzen von Datenbereitstellung – eine Bestandsaufnahme," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 113, October.
    11. Ascui, Francisco & Ball, Alex & Kahn, Lewis & Rowe, James, 2021. "Is operationalising natural capital risk assessment practicable?," Ecosystem Services, Elsevier, vol. 52(C).
    12. Pigford, Ashlee-Ann E. & Hickey, Gordon M. & Klerkx, Laurens, 2018. "Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions," Agricultural Systems, Elsevier, vol. 164(C), pages 116-121.
    13. Tianyu Qin & Lijun Wang & Yanxin Zhou & Liyue Guo & Gaoming Jiang & Lei Zhang, 2022. "Digital Technology-and-Services-Driven Sustainable Transformation of Agriculture: Cases of China and the EU," Agriculture, MDPI, vol. 12(2), pages 1-16, February.
    14. Viet, Nguyen Quoc & Behdani, Behzad & Bloemhof, Jacqueline, 2018. "Value of Information to Improve Daily Operations in High-Density Logistics," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 9(1), January.
    15. Thomas M. Koutsos & Georgios C. Menexes & Andreas P. Mamolos, 2021. "The Use of Crop Yield Autocorrelation Data as a Sustainable Approach to Adjust Agronomic Inputs," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    16. Li, Lei & Lin, Jiabao & Ouyang, Ye & Luo, Xin (Robert), 2022. "Evaluating the impact of big data analytics usage on the decision-making quality of organizations," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    17. Panos Constantinides & Ola Henfridsson & Geoffrey G. Parker, 2018. "Introduction—Platforms and Infrastructures in the Digital Age," Information Systems Research, INFORMS, vol. 29(2), pages 381-400, June.
    18. Iban, Muzaffer Can & Aksu, Oktay, 2020. "A model for big spatial rural data infrastructure in Turkey: Sensor-driven and integrative approach," Land Use Policy, Elsevier, vol. 91(C).
    19. Liu, Mingyi & Qian, Feng & Mi, Jia & Zuo, Lei, 2022. "Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions," Applied Energy, Elsevier, vol. 321(C).
    20. Fengwan Zhang & Xueling Bao & Xin Deng & Dingde Xu, 2022. "Rural Land Transfer in the Information Age: Can Internet Use Affect Farmers’ Land Transfer-In?," Land, MDPI, vol. 11(10), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921012812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.