IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923014393.html
   My bibliography  Save this article

An ultra-compact lightweight electromagnetic generator enhanced with Halbach magnet array and printed triphase windings

Author

Listed:
  • Zhou, Xu
  • Wang, Kangda
  • Li, Siyu
  • Wang, Yadong
  • Sun, Daoyu
  • Wang, Longlong
  • He, Zhizhu
  • Tang, Wei
  • Liu, Huicong
  • Jin, Xiaoping
  • Li, Zhen

Abstract

Electromagnetic generator (EMG) plays a pivotal role in in-situ power supply for low-power electronics. However, a major challenge associated with EMGs is the limited power density. To address this issue, various strategies have been proposed, including magnetic field augmentation of magnets, magnetic flux variation rate escalation at the coil, and structural miniaturization. In this study, we present an innovative ultra-compact electromagnetic generator (UL-EMG) in light weight that integrates the Halbach magnet arrays and printed circuit board (PCB) technologies. The UL-EMG incorporates a 12-layer printed triphase windings into its PCB stator, thereby upgrading both device compactness and output performance. To assess the performance of the UL-EMG, comprehensive bench tests were conducted. Interestingly, results indicate that at a low rotational speed of 200 rpm, the UL-EMG achieved a peak AC output power and power density of 54.9 mW and 1.25 kW/m3, respectively, representing a 22-fold expansion compared to conventional EMGs. Moreover, the UL-EMG exhibited exceptional output characteristics across a wide range of rotational speeds, significantly bolstering its capacity to drive various low-power electrical appliances. This study paves a novel path for heightening the power density of EMGs and highlights the promising application prospects of compact EMGs in in-situ power supply advancement.

Suggested Citation

  • Zhou, Xu & Wang, Kangda & Li, Siyu & Wang, Yadong & Sun, Daoyu & Wang, Longlong & He, Zhizhu & Tang, Wei & Liu, Huicong & Jin, Xiaoping & Li, Zhen, 2024. "An ultra-compact lightweight electromagnetic generator enhanced with Halbach magnet array and printed triphase windings," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014393
    DOI: 10.1016/j.apenergy.2023.122075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923014393
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.