IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v322y2022ics0306261922008224.html
   My bibliography  Save this article

High-efficient built-in wave energy harvesting technology: From laboratory to open ocean test

Author

Listed:
  • Li, Yunfei
  • Ma, Xin
  • Tang, Tianyi
  • Zha, Fusheng
  • Chen, Zhaohui
  • Liu, Huicong
  • Sun, Lining

Abstract

The ocean contains a huge amount of renewable energy. There is a tremendous need to develop new ocean energy harvesting technology for long-term and self-sustained global ocean observation. Herein, an omnidirectional and high-efficient built-in wave energy harvesting (WEH) system fully integrated in ocean observing platform is introduced, realizing energy harvesting and self-powered ocean-wave sensing, simultaneously. Based on the chaotic pendulum design and high-efficient electromagnetic coupling effect, the high output power of 520 mW and power density of 0.66 mW/cm3 have been achieved under ultra-low-frequency wave excitation with wave height of 20 cm and period of 1 s, which is extremely higher than most of the reported ones. More significantly, the built-in WEH system was fully integrated with the buoy and successfully completed the offshore test in the Yellow Sea for one month and open ocean test in the Kuroshio Extension (KE) region of Northwestern Pacific for four months. During the offshore test, the working time of an autonomous positioning sensor of the buoy was significant extended from 10 to 25 days, which is 2.5 times longer. During the open ocean test, the built-in WEH system was able to long-term survive in the Kuroshio Extension, which is one of the most dynamically-complex regions in the global ocean. The maximum and averaged output power of 210 and 24.5 mW, respectively, have been achieved, under the ocean wave heights and periods varying from 0.4 to 2.2 m and from 4.2 to 7.2 s. Meanwhile, the generated voltage data can be transmitted via Iridium Satellite and utilized for evaluating and sensing the real-time wave conditions, i.e., wave height and period. It comes to an encouraging conclusion that the built-in WEH system cannot only harvest sufficient energy to extend the service life of ocean observing platform, but also as a self-powered wave sensor to assist ocean monitoring. This work shows a promising milestone in WEH technology from laboratory prototype to practical open ocean application.

Suggested Citation

  • Li, Yunfei & Ma, Xin & Tang, Tianyi & Zha, Fusheng & Chen, Zhaohui & Liu, Huicong & Sun, Lining, 2022. "High-efficient built-in wave energy harvesting technology: From laboratory to open ocean test," Applied Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:appene:v:322:y:2022:i:c:s0306261922008224
    DOI: 10.1016/j.apenergy.2022.119498
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922008224
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiaofan & Chen, ChienAn & Li, Qiaofeng & Xu, Lin & Liang, Changwei & Ngo, Khai & Parker, Robert G. & Zuo, Lei, 2020. "A compact mechanical power take-off for wave energy converters: Design, analysis, and test verification," Applied Energy, Elsevier, vol. 278(C).
    2. Viet, N.V. & Xie, X.D. & Liew, K.M. & Banthia, N. & Wang, Q., 2016. "Energy harvesting from ocean waves by a floating energy harvester," Energy, Elsevier, vol. 112(C), pages 1219-1226.
    3. Jeff Tollefson, 2014. "Power from the oceans: Blue energy," Nature, Nature, vol. 508(7496), pages 302-304, April.
    4. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    5. Uihlein, Andreas & Magagna, Davide, 2016. "Wave and tidal current energy – A review of the current state of research beyond technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1070-1081.
    6. Li, Qiaofeng & Mi, Jia & Li, Xiaofan & Chen, Shuo & Jiang, Boxi & Zuo, Lei, 2021. "A self-floating oscillating surge wave energy converter," Energy, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guan, Zhibin & Li, Ping & Wen, Yumei & Du, Yu & Wang, Guoda, 2023. "Bubble energy harvesting suitable for weak gas sources using bubble stream release scheme," Applied Energy, Elsevier, vol. 349(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhongjie & Peng, Yan & Xu, Zhibing & Peng, Jinlin & Xin, Liming & Wang, Min & Luo, Jun & Xie, Shaorong & Pu, Huayan, 2021. "Harnessing energy from suspension systems of oceanic vehicles with high-performance piezoelectric generators," Energy, Elsevier, vol. 228(C).
    2. Li, Boyang & Li, Canpeng & Zhang, Baoshou & Deng, Fang & Yang, Hualin, 2023. "The effect of the different spacing ratios on wave energy converter of three floating bodies," Energy, Elsevier, vol. 268(C).
    3. Mi, Jia & Wu, Xian & Capper, Joseph & Li, Xiaofan & Shalaby, Ahmed & Wang, Ruoyu & Lin, Shihong & Hajj, Muhammad & Zuo, Lei, 2023. "Experimental investigation of a reverse osmosis desalination system directly powered by wave energy," Applied Energy, Elsevier, vol. 343(C).
    4. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. Zhang, Yidan & Shek, Jonathan K.H. & Mueller, Markus A., 2023. "Controller design for a tidal turbine array, considering both power and loads aspects," Renewable Energy, Elsevier, vol. 216(C).
    6. Xie, Jian & Xu, Jinliang & Liang, Cong & She, Qingting & Li, Mingjia, 2019. "A comprehensive understanding of enhanced condensation heat transfer using phase separation concept," Energy, Elsevier, vol. 172(C), pages 661-674.
    7. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    8. Larsen, Ulrik & Pierobon, Leonardo & Haglind, Fredrik & Gabrielii, Cecilia, 2013. "Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection," Energy, Elsevier, vol. 55(C), pages 803-812.
    9. Kaufmann, Nicholas & Carolus, Thomas & Starzmann, Ralf, 2019. "Turbines for modular tidal current energy converters," Renewable Energy, Elsevier, vol. 142(C), pages 451-460.
    10. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    11. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    12. Zahid Kausar, A.S.M. & Reza, Ahmed Wasif & Saleh, Mashad Uddin & Ramiah, Harikrishnan, 2014. "Energizing wireless sensor networks by energy harvesting systems: Scopes, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 973-989.
    13. Roberto Pili & Hartmut Spliethoff & Christoph Wieland, 2017. "Dynamic Simulation of an Organic Rankine Cycle—Detailed Model of a Kettle Boiler," Energies, MDPI, vol. 10(4), pages 1-28, April.
    14. Krail, Jürgen & Beckmann, Georg & Schittl, Florian & Piringer, Gerhard, 2023. "Comparative thermodynamic analysis of an improved ORC process with integrated injection of process fluid," Energy, Elsevier, vol. 266(C).
    15. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    16. Sikarwar, Shailesh Singh & Surywanshi, Gajanan Dattarao & Patnaikuni, Venkata Suresh & Kakunuri, Manohar & Vooradi, Ramsagar, 2020. "Chemical looping combustion integrated Organic Rankine Cycled biomass-fired power plant – Energy and exergy analyses," Renewable Energy, Elsevier, vol. 155(C), pages 931-949.
    17. Jahangir, Mohammad Hossein & Hosseini, Seyed Sina & Mehrpooya, Mehdi, 2018. "A detailed theoretical modeling and parametric investigation of potential power in heaving buoys," Energy, Elsevier, vol. 154(C), pages 201-209.
    18. Li, Jian & Liu, Qiang & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Di, Jiawei, 2017. "Optimized liquid-separated thermodynamic states for working fluids of organic Rankine cycles with liquid-separated condensation," Energy, Elsevier, vol. 141(C), pages 652-660.
    19. Yamada, Noboru & Tominaga, Yoshihito & Yoshida, Takanori, 2014. "Demonstration of 10-Wp micro organic Rankine cycle generator for low-grade heat recovery," Energy, Elsevier, vol. 78(C), pages 806-813.
    20. Wen, Binrong & Jiang, Zhihao & Li, Zhanwei & Peng, Zhike & Dong, Xingjian & Tian, Xinliang, 2022. "On the aerodynamic loading effect of a model Spar-type floating wind turbine: An experimental study," Renewable Energy, Elsevier, vol. 184(C), pages 306-319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:322:y:2022:i:c:s0306261922008224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.