IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v142y2019icp451-460.html
   My bibliography  Save this article

Turbines for modular tidal current energy converters

Author

Listed:
  • Kaufmann, Nicholas
  • Carolus, Thomas
  • Starzmann, Ralf

Abstract

The vast potential of ocean energies is of increasing interest. Harnessing marine currents driven by the tidal cycle have triggered the development of various power conversion systems. However, the comparably high levelized cost of electricity is still the main hindrance for a faster market penetration. The paper describes a novel strategy to decrease the cost: A number of small prefabricated turbines of low complexity form an arbitrary scalable array of turbines; a modular design of the key unit “turbine” allows an easy adaption to the tidal current velocity profile at a particular site; hydraulically optimized turbine blades ensure maximum annual energy production and minimum immersion depth. Results of the design efforts are a 4 m and a 6.3 m diameter horizontal axis free flow turbine with an identical drive train for a rated electrical power of 70 kW. Four turbines have been tested on a 30 m × 26 m trimaran placed for several months near the Falls of Lora in Scotland. The power yield fully confirmed the prediction. As an example, the annual electric energy production from such a turbine, placed in the Minas Passage area of the Bay of Fundy in Canada - an ideal site of harnessing tidal currents, is forecasted as 230 MWh.

Suggested Citation

  • Kaufmann, Nicholas & Carolus, Thomas & Starzmann, Ralf, 2019. "Turbines for modular tidal current energy converters," Renewable Energy, Elsevier, vol. 142(C), pages 451-460.
  • Handle: RePEc:eee:renene:v:142:y:2019:i:c:p:451-460
    DOI: 10.1016/j.renene.2019.04.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119306044
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.04.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    2. Uihlein, Andreas & Magagna, Davide, 2016. "Wave and tidal current energy – A review of the current state of research beyond technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1070-1081.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Qin & Xiaoran Tang & Yu-Ting Wu & Sung-Ki Lyu, 2022. "Advancement of Tidal Current Generation Technology in Recent Years: A Review," Energies, MDPI, vol. 15(21), pages 1-18, October.
    2. Guerra, Maricarmen & Hay, Alex E. & Karsten, Richard & Trowse, Gregory & Cheel, Richard A., 2021. "Turbulent flow mapping in a high-flow tidal channel using mobile acoustic Doppler current profilers," Renewable Energy, Elsevier, vol. 177(C), pages 759-772.
    3. Akbari, Negar & Jones, Dylan & Arabikhan, Farzad, 2021. "Goal programming models with interval coefficients for the sustainable selection of marine renewable energy projects in the UK," European Journal of Operational Research, Elsevier, vol. 293(2), pages 748-760.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radfar, Soheil & Panahi, Roozbeh & Javaherchi, Teymour & Filom, Siyavash & Mazyaki, Ahmad Rezaee, 2017. "A comprehensive insight into tidal stream energy farms in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 323-338.
    2. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Zhang, Yidan & Shek, Jonathan K.H. & Mueller, Markus A., 2023. "Controller design for a tidal turbine array, considering both power and loads aspects," Renewable Energy, Elsevier, vol. 216(C).
    4. Lyhne, Ivar & Aaen, Sara Bjørn & Nielsen, Helle & Kørnøv, Lone & Larsen, Sanne Vammen, 2018. "Citizens’ self-mobilization, motivational factors, and the group of most engaged citizens: The case of a radioactive waste repository in Denmark," Land Use Policy, Elsevier, vol. 72(C), pages 433-442.
    5. Hogan, Jessica L. & Warren, Charles R. & Simpson, Michael & McCauley, Darren, 2022. "What makes local energy projects acceptable? Probing the connection between ownership structures and community acceptance," Energy Policy, Elsevier, vol. 171(C).
    6. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    7. P.W.J. de Bijl & Helanya Fourie, 2019. "The energy transition: Does ownership matter for realizing public interest objectives?," Working Papers 19-24, Utrecht School of Economics.
    8. Dugstad, Anders & Grimsrud, Kristine & Kipperberg, Gorm & Lindhjem, Henrik & Navrud, Ståle, 2020. "Acceptance of wind power development and exposure – Not-in-anybody's-backyard," Energy Policy, Elsevier, vol. 147(C).
    9. Vringer, Kees & Carabain, Christine L., 2020. "Measuring the legitimacy of energy transition policy in the Netherlands," Energy Policy, Elsevier, vol. 138(C).
    10. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    11. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    12. Briguglio, Marie & Formosa, Glenn, 2017. "When households go solar: Determinants of uptake of a Photovoltaic Scheme and policy insights," Energy Policy, Elsevier, vol. 108(C), pages 154-162.
    13. Burghard, Uta & Breitschopf, Barbara & Wohlfarth, Katharina & Müller, Fabian & Keil, Julia, 2021. "Perception of monetary and non-monetary effects on the energy transition: Results of a mixed method approach," Working Papers "Sustainability and Innovation" S04/2021, Fraunhofer Institute for Systems and Innovation Research (ISI).
    14. Okkonen, Lasse & Lehtonen, Olli, 2016. "Socio-economic impacts of community wind power projects in Northern Scotland," Renewable Energy, Elsevier, vol. 85(C), pages 826-833.
    15. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    16. Olivia Muza & Ramit Debnath, 2020. "Socially inclusive renewable energy transition in sub-Saharan Africa: A social shaping of technology analysis of appliance uptake in Rwanda," Working Papers EPRG2017, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    17. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    18. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    19. Russell, Aaron & Bingaman, Samantha & Garcia, Hannah-Marie, 2021. "Threading a moving needle: The spatial dimensions characterizing US offshore wind policy drivers," Energy Policy, Elsevier, vol. 157(C).
    20. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:142:y:2019:i:c:p:451-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.