IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v349y2023ics0306261923009844.html
   My bibliography  Save this article

Bubble energy harvesting suitable for weak gas sources using bubble stream release scheme

Author

Listed:
  • Guan, Zhibin
  • Li, Ping
  • Wen, Yumei
  • Du, Yu
  • Wang, Guoda

Abstract

The subsea observation network can provide a window for human underwater exploration, but existing power solutions fail to provide sustainable and maintenance-free power for its widespread nodes. The ocean contains a vast amount of bubble potential energy, which has yet to be extracted as an energy source. Existing bubble energy harvesting systems rely heavily on the considerable number of bubbles to generate high enough velocity, incapable of fully utilizing widely distributed weak gas sources. In this work, we propose a bubble stream release scheme specifically designed for weak gas sources, based on the threshold matching principle of the energy harvesting system. Compared to systems that cannot harvest any energy from weak gases, we use a large bubble to start the system and the following small bubbles can generate electricity that otherwise would be wasted. In a system with a height of 1.6 m, the energy density of the bubble stream release scheme reaches 119.31 mJ/L, which is 7.6 times higher than that of the conventional scheme. The advantages of the bubble stream release scheme become more significant as the system height increases. This research allows abundant weak gas sources to become a promising energy source for subsea observation network nodes, accelerating the development of the smart ocean.

Suggested Citation

  • Guan, Zhibin & Li, Ping & Wen, Yumei & Du, Yu & Wang, Guoda, 2023. "Bubble energy harvesting suitable for weak gas sources using bubble stream release scheme," Applied Energy, Elsevier, vol. 349(C).
  • Handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009844
    DOI: 10.1016/j.apenergy.2023.121620
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923009844
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121620?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guan, Zhibin & Li, Ping & Wen, Yumei & Du, Yu & Wang, Yao, 2022. "Efficient bubble energy harvesting by promoting pressure potential energy release using helix flow channel," Applied Energy, Elsevier, vol. 328(C).
    2. Guan, Zhibin & Li, Ping & Wen, Yumei & Du, Yu & Han, Tao & Ji, Xiaojun, 2021. "Efficient underwater energy harvesting from bubble-driven pipe flow," Applied Energy, Elsevier, vol. 295(C).
    3. Liu, Mingyi & Qian, Feng & Mi, Jia & Zuo, Lei, 2022. "Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions," Applied Energy, Elsevier, vol. 321(C).
    4. Li, Yunfei & Ma, Xin & Tang, Tianyi & Zha, Fusheng & Chen, Zhaohui & Liu, Huicong & Sun, Lining, 2022. "High-efficient built-in wave energy harvesting technology: From laboratory to open ocean test," Applied Energy, Elsevier, vol. 322(C).
    5. Zhu, Mingkang & Zhang, Jiacheng & Wang, Zhaohui & Yu, Xin & Zhang, Yuejun & Zhu, Jianyang & Wang, Zhong Lin & Cheng, Tinghai, 2022. "Double-blade structured triboelectric–electromagnetic hybrid generator with aerodynamic enhancement for breeze energy harvesting," Applied Energy, Elsevier, vol. 326(C).
    6. Wijewardhana, K. Rohana & Ekanayaka, Thilini K. & Jayaweera, E.N. & Shahzad, Amir & Song, Jang-Kun, 2018. "Integration of multiple bubble motion active transducers for improving energy-harvesting efficiency," Energy, Elsevier, vol. 160(C), pages 648-653.
    7. Wijewardhana, K. Rohana & Shen, Tian-Zi & Song, Jang-Kun, 2017. "Energy harvesting using air bubbles on hydrophobic surfaces containing embedded charges," Applied Energy, Elsevier, vol. 206(C), pages 432-438.
    8. Fang, Shitong & Chen, Keyu & Lai, Zhihui & Zhou, Shengxi & Liao, Wei-Hsin, 2023. "Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra-low-frequency rotational excitations," Applied Energy, Elsevier, vol. 331(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan, Zhibin & Li, Ping & Wen, Yumei & Du, Yu & Han, Tao & Ji, Xiaojun, 2021. "Efficient underwater energy harvesting from bubble-driven pipe flow," Applied Energy, Elsevier, vol. 295(C).
    2. Guan, Zhibin & Li, Ping & Wen, Yumei & Du, Yu & Wang, Yao, 2022. "Efficient bubble energy harvesting by promoting pressure potential energy release using helix flow channel," Applied Energy, Elsevier, vol. 328(C).
    3. Chang, Chih-Chang & Huang, Wei-Hao & Mai, Van-Phung & Tsai, Jia-Shiuan & Yang, Ruey-Jen, 2021. "Experimental investigation into energy harvesting of NaCl droplet flow over graphene supported by silicon dioxide," Energy, Elsevier, vol. 229(C).
    4. Roberto De Fazio & Roberta Proto & Carolina Del-Valle-Soto & Ramiro Velázquez & Paolo Visconti, 2022. "New Wearable Technologies and Devices to Efficiently Scavenge Energy from the Human Body: State of the Art and Future Trends," Energies, MDPI, vol. 15(18), pages 1-37, September.
    5. Mojtaba Ghodsi & Morteza Mohammadzaheri & Payam Soltani, 2023. "Analysis of Cantilever Triple-Layer Piezoelectric Harvester (CTLPH): Non-Resonance Applications," Energies, MDPI, vol. 16(7), pages 1-17, March.
    6. Wijewardhana, K. Rohana & Ekanayaka, Thilini K. & Jayaweera, E.N. & Shahzad, Amir & Song, Jang-Kun, 2018. "Integration of multiple bubble motion active transducers for improving energy-harvesting efficiency," Energy, Elsevier, vol. 160(C), pages 648-653.
    7. Helseth, L.E., 2021. "Harvesting energy from light and water droplets by covering photovoltaic cells with transparent polymers," Applied Energy, Elsevier, vol. 300(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.