IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v164y2016icp620-627.html
   My bibliography  Save this article

Generation of electricity from deep-sea hydrothermal vents with a thermoelectric converter

Author

Listed:
  • Xie, Yu
  • Wu, Shi-jun
  • Yang, Can-jun

Abstract

The high temperatures of sea-floor hydrothermal vents make them good targets for the exploitation of thermal energy. Taking advantage of this prospect, this study developed a thermoelectric converter that harvests thermal energy from hydrothermal fluids through a heat pipe and converts heat to electrical energy with thermoelectric generators. A power management system that enables the thermoelectric converter to continuously power a data logger and a light-emitting diode lamp was also proposed. The thermoelectric converter was field tested at a deep-sea hydrothermal vent with a depth of 2765m at the Dragon Flag Field along the Southwest Indian Ridge. With the use of the thermal gradient between hydrothermal fluids and seawater, the thermoelectric converter obtained a sustained power of 2.6–3.9W during the field test. Our results demonstrate that the thermal energy of hydrothermal fluids can be an alternative renewable power source for seabed observation equipment that requires watt-level power.

Suggested Citation

  • Xie, Yu & Wu, Shi-jun & Yang, Can-jun, 2016. "Generation of electricity from deep-sea hydrothermal vents with a thermoelectric converter," Applied Energy, Elsevier, vol. 164(C), pages 620-627.
  • Handle: RePEc:eee:appene:v:164:y:2016:i:c:p:620-627
    DOI: 10.1016/j.apenergy.2015.12.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915016098
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.12.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stevens, Robert J. & Weinstein, Steven J. & Koppula, Karuna S., 2014. "Theoretical limits of thermoelectric power generation from exhaust gases," Applied Energy, Elsevier, vol. 133(C), pages 80-88.
    2. He, Wei & Zhang, Gan & Zhang, Xingxing & Ji, Jie & Li, Guiqiang & Zhao, Xudong, 2015. "Recent development and application of thermoelectric generator and cooler," Applied Energy, Elsevier, vol. 143(C), pages 1-25.
    3. Suter, C. & Jovanovic, Z.R. & Steinfeld, A., 2012. "A 1kWe thermoelectric stack for geothermal power generation – Modeling and geometrical optimization," Applied Energy, Elsevier, vol. 99(C), pages 379-385.
    4. Su, Shanhe & Liu, Tie & Wang, Yuan & Chen, Xiaohang & Wang, Jintong & Chen, Jincan, 2014. "Performance optimization analyses and parametric design criteria of a dye-sensitized solar cell thermoelectric hybrid device," Applied Energy, Elsevier, vol. 120(C), pages 16-22.
    5. Yu, Shuhai & Du, Qing & Diao, Hai & Shu, Gequn & Jiao, Kui, 2015. "Start-up modes of thermoelectric generator based on vehicle exhaust waste heat recovery," Applied Energy, Elsevier, vol. 138(C), pages 276-290.
    6. Zhang, Ming & Miao, Lei & Kang, Yi Pu & Tanemura, Sakae & Fisher, Craig A.J. & Xu, Gang & Li, Chun Xin & Fan, Guang Zhu, 2013. "Efficient, low-cost solar thermoelectric cogenerators comprising evacuated tubular solar collectors and thermoelectric modules," Applied Energy, Elsevier, vol. 109(C), pages 51-59.
    7. Qiu, K. & Hayden, A.C.S., 2012. "Integrated thermoelectric and organic Rankine cycles for micro-CHP systems," Applied Energy, Elsevier, vol. 97(C), pages 667-672.
    8. He, Wei & Wang, Shixue & Lu, Chi & Zhang, Xing & Li, Yanzhe, 2016. "Influence of different cooling methods on thermoelectric performance of an engine exhaust gas waste heat recovery system," Applied Energy, Elsevier, vol. 162(C), pages 1251-1258.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xingtian & Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yuan, Yanping & Liu, Yujie, 2017. "A renewable energy harvesting system using a mechanical vibration rectifier (MVR) for railroads," Applied Energy, Elsevier, vol. 204(C), pages 1535-1543.
    2. Hwang, Wonseop & Kim, Kyung-Bum & Cho, Jae Yong & Yang, Chan Ho & Kim, Jung Hun & Song, Gyeong Ju & Song, Yewon & Jeon, Deok Hwan & Ahn, Jung Hwan & Do Hong, Seong & Kim, Jihoon & Lee, Tae Hee & Choi,, 2019. "Watts-level road-compatible piezoelectric energy harvester for a self-powered temperature monitoring system on an actual roadway," Applied Energy, Elsevier, vol. 243(C), pages 313-320.
    3. Wang, Chaohui & Zhao, Jianxiong & Li, Qiang & Li, Yanwei, 2018. "Optimization design and experimental investigation of piezoelectric energy harvesting devices for pavement," Applied Energy, Elsevier, vol. 229(C), pages 18-30.
    4. Wang, Xuejian & Qi, Ji & Deng, Wei & Li, Gongping & Gao, Xudong & He, Luanxuan & Zhang, Shixu, 2021. "An optimized design approach concerning thermoelectric generators with frustum-shaped legs based on three-dimensional multiphysics model," Energy, Elsevier, vol. 233(C).
    5. Guorui Li & Tuck-Whye Wong & Benjamin Shih & Chunyu Guo & Luwen Wang & Jiaqi Liu & Tao Wang & Xiaobo Liu & Jiayao Yan & Baosheng Wu & Fajun Yu & Yunsai Chen & Yiming Liang & Yaoting Xue & Chengjun Wan, 2023. "Bioinspired soft robots for deep-sea exploration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Wang, Chaohui & Wang, Shuai & Gao, Zhiwei & Wang, Xingju, 2019. "Applicability evaluation of embedded piezoelectric energy harvester applied in pavement structures," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Mohammadreza Gholikhani & Seyed Amid Tahami & Mohammadreza Khalili & Samer Dessouky, 2019. "Electromagnetic Energy Harvesting Technology: Key to Sustainability in Transportation Systems," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    8. Xiong, Haocheng & Wang, Linbing, 2016. "Piezoelectric energy harvester for public roadway: On-site installation and evaluation," Applied Energy, Elsevier, vol. 174(C), pages 101-107.
    9. Luo, Yang & Li, Linlin & Chen, Yiping & Kim, Chang Nyung, 2022. "Influence of geometric parameter and contact resistances on the thermal-electric behavior of a segmented TEG," Energy, Elsevier, vol. 254(PC).
    10. Guan, Zhibin & Li, Ping & Wen, Yumei & Du, Yu & Wang, Yao, 2022. "Efficient bubble energy harvesting by promoting pressure potential energy release using helix flow channel," Applied Energy, Elsevier, vol. 328(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    2. Kim, Hoon & Kim, Woochul, 2015. "A way of achieving a low $/W and a decent power output from a thermoelectric device," Applied Energy, Elsevier, vol. 139(C), pages 205-211.
    3. Li, Bo & Huang, Kuo & Yan, Yuying & Li, Yong & Twaha, Ssennoga & Zhu, Jie, 2017. "Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles," Applied Energy, Elsevier, vol. 205(C), pages 868-879.
    4. Lv, Hao & Wang, Xiao-Dong & Meng, Jing-Hui & Wang, Tian-Hu & Yan, Wei-Mon, 2016. "Enhancement of maximum temperature drop across thermoelectric cooler through two-stage design and transient supercooling effect," Applied Energy, Elsevier, vol. 175(C), pages 285-292.
    5. Högblom, Olle & Andersson, Ronnie, 2016. "A simulation framework for prediction of thermoelectric generator system performance," Applied Energy, Elsevier, vol. 180(C), pages 472-482.
    6. Shen, Rong & Gou, Xiaolong & Xu, Haoyu & Qiu, Kuanrong, 2017. "Dynamic performance analysis of a cascaded thermoelectric generator," Applied Energy, Elsevier, vol. 203(C), pages 808-815.
    7. Ding, L.C. & Akbarzadeh, A. & Date, Abhijit, 2016. "Electric power generation via plate type power generation unit from solar pond using thermoelectric cells," Applied Energy, Elsevier, vol. 183(C), pages 61-76.
    8. Massaguer, A. & Massaguer, E. & Comamala, M. & Pujol, T. & Montoro, L. & Cardenas, M.D. & Carbonell, D. & Bueno, A.J., 2017. "Transient behavior under a normalized driving cycle of an automotive thermoelectric generator," Applied Energy, Elsevier, vol. 206(C), pages 1282-1296.
    9. Wang, Tian-Hu & Wang, Qiu-Hong & Leng, Chuan & Wang, Xiao-Dong, 2015. "Parameter analysis and optimal design for two-stage thermoelectric cooler," Applied Energy, Elsevier, vol. 154(C), pages 1-12.
    10. Hyland, Melissa & Hunter, Haywood & Liu, Jie & Veety, Elena & Vashaee, Daryoosh, 2016. "Wearable thermoelectric generators for human body heat harvesting," Applied Energy, Elsevier, vol. 182(C), pages 518-524.
    11. Cózar, I.R. & Pujol, T. & Lehocky, M., 2018. "Numerical analysis of the effects of electrical and thermal configurations of thermoelectric modules in large-scale thermoelectric generators," Applied Energy, Elsevier, vol. 229(C), pages 264-280.
    12. Fathabadi, Hassan, 2019. "Two novel methods for converting the waste heat of PV modules caused by temperature rise into electric power," Renewable Energy, Elsevier, vol. 142(C), pages 543-551.
    13. Meng, Jing-Hui & Wang, Xiao-Dong & Zhang, Xin-Xin, 2013. "Transient modeling and dynamic characteristics of thermoelectric cooler," Applied Energy, Elsevier, vol. 108(C), pages 340-348.
    14. Fathabadi, Hassan, 2019. "Replacing commercial thermoelectric generators with a novel electrochemical device in low-grade heat applications," Energy, Elsevier, vol. 174(C), pages 932-937.
    15. Delfani, Fatemeh & Rahbar, Nader & Aghanajafi, Cyrus & Heydari, Ali & KhalesiDoost, Abdollah, 2021. "Utilization of thermoelectric technology in converting waste heat into electrical power required by an impressed current cathodic protection system," Applied Energy, Elsevier, vol. 302(C).
    16. Chen, Wei-Hsin & Wu, Po-Hua & Lin, Yu-Li, 2018. "Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 209(C), pages 211-223.
    17. Ma, Ting & Qu, Zuoming & Yu, Xingfei & Lu, Xing & Chen, Yitung & Wang, Qiuwang, 2019. "Numerical study and optimization of thermoelectric-hydraulic performance of a novel thermoelectric generator integrated recuperator," Energy, Elsevier, vol. 174(C), pages 1176-1187.
    18. He, Wei & Zhang, Gan & Zhang, Xingxing & Ji, Jie & Li, Guiqiang & Zhao, Xudong, 2015. "Recent development and application of thermoelectric generator and cooler," Applied Energy, Elsevier, vol. 143(C), pages 1-25.
    19. Bai, Shengxi & Liu, Chunhua, 2021. "Overview of energy harvesting and emission reduction technologies in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    20. Kim, Tae Young & Negash, Assmelash A. & Cho, Gyubaek, 2017. "Experimental study of energy utilization effectiveness of thermoelectric generator on diesel engine," Energy, Elsevier, vol. 128(C), pages 531-539.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:164:y:2016:i:c:p:620-627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.