IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923014368.html
   My bibliography  Save this article

Development of an electromagnetic energy harvester for ultra-low frequency pitch vibration of unmanned marine devices

Author

Listed:
  • Wang, Tao
  • Lv, Haobin
  • Wang, Xin

Abstract

Pitch vibrations can be commonly observed in unmanned marine devices under wave excitation, but there is relatively little research on harvesting the energy from the pitch vibrations with ultra-low frequency. This work develops a novel built-in electromagnetic energy harvester using rope transmission to provide sustainable power supply for onboard electronics. It has the advantages of low friction and compact structure, which is suitable for installation inside an autonomous underwater vehicle with slender cylindrical shape. Dynamic modeling and linearization approach are employed to analyze its energy harvesting performance theoretically. A scalable prototype is fabricated and tested on a motion platform with six degrees of freedom by simulating periodic pitch vibration. The results show that the prototype can output electrical power with the peak value of 1663 mW and the average value of 315 mW at the excitation frequency of 0.6 Hz. It also has competitive energy extraction efficiency and the maximum value reaches 33.23%. The experimental data are in good agreement with the theoretical data, which verifies the effectiveness of the theoretical model. The developed energy harvester can serve as a potential candidate for powering the electronics on unmanned marine devices.

Suggested Citation

  • Wang, Tao & Lv, Haobin & Wang, Xin, 2024. "Development of an electromagnetic energy harvester for ultra-low frequency pitch vibration of unmanned marine devices," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014368
    DOI: 10.1016/j.apenergy.2023.122072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923014368
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.