IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224003049.html
   My bibliography  Save this article

Design, modeling and performance analysis of a deformable double-float wave energy converter for AUVs

Author

Listed:
  • Chen, Xianzhi
  • Lu, Yunfei
  • Zhou, Songlin
  • Chen, Weixing

Abstract

Autonomous underwater vehicles (AUVs) are one of the most important means of ocean exploration. However, the restricted energy supply poses a significant challenge to the advancement and practical application of AUVs. Based on the structural characteristics, this paper proposes a novel AUV, which integrates a deformable double-float wave energy converter (WEC), called DFWEC-AUV. The DFWEC empowers the AUV to capture wave energy to supply itself by oscillating double-float form in power generation mode. The structural design, focusing on the deformable float (DeF) and the onboard damping plate (DP), and the working principle, including mode switching and energy capture, are firstly introduced. Then, a double-float dynamic model of DFWEC-AUV oscillating in regular waves is established to reveal the energy capture mechanism in both frequency-domain and time-domain. Finally, the influence of the presence of DP, structural parameters (diameter of DP and deployment angle of DeF) and power take-off (PTO) system damping coefficient on the dynamic response characteristics and energy capture performance is analyzed. In addition, to verify the effectiveness of the performance analysis, a comparative simulation of parameter optimization is carried out under actual wave excitation. The results show that the addition of onboard DP is able to effectively enhance the energy capture performance of DFWEC-AUV, as well as increase the energy capture bandwidth. Moreover, the larger the diameter of the DP is, the greater the performance improvement of DFWEC-AUV is. Conversely, increasing the deployment angle of the DeF does not necessarily lead to better power capture performance. Additionally, it is observed that waves of a particular period are consistently associated with an optimal PTO damping coefficient, which leads to superior power capture performance. In comparative simulation, the energy capture performance of DFWEC-AUV after parameter optimization is increased by 4.7 times.

Suggested Citation

  • Chen, Xianzhi & Lu, Yunfei & Zhou, Songlin & Chen, Weixing, 2024. "Design, modeling and performance analysis of a deformable double-float wave energy converter for AUVs," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003049
    DOI: 10.1016/j.energy.2024.130533
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130533?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.