IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v326y2022ics0306261922013046.html
   My bibliography  Save this article

Bandwidth enhancement of a gimbaled-pendulum vibration energy harvester using spatial multi-stable mechanism

Author

Listed:
  • Wang, Tao
  • Lou, Hu
  • Zhu, Shiqiang

Abstract

Vibration energy harvesting based on pendulums is a promising approach for low-frequency excitation and large-scale application. Conventional design is to match the natural frequency of the pendulum energy harvester to the excitation frequency, which results in a narrow bandwidth. This work develops a gimbaled-pendulum energy harvester with spatial multi-stability by using a magnetic mechanism. The structure, modeling, design consideration, and dynamic simulation of the energy harvester are presented in detail with the aid of numerical analysis. Comparative experiments such as motion patterns, electrical outputs with variable excitations, load effect, and bidirectional excitation are implemented based on a fabricated prototype to evaluate the proposed design. It is shown that the energy harvester is prone to enter into high-energy orbits even at low excitation frequency and amplitude due to the effect of multi-well potential distribution. In general, the bandwidth of the energy harvester is significantly enhanced through its spatial multi-stability. This work can provide a candidate for low-frequency vibration energy harvesting with wide spectrum excitation.

Suggested Citation

  • Wang, Tao & Lou, Hu & Zhu, Shiqiang, 2022. "Bandwidth enhancement of a gimbaled-pendulum vibration energy harvester using spatial multi-stable mechanism," Applied Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922013046
    DOI: 10.1016/j.apenergy.2022.120047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922013046
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gu, Yuhan & Liu, Weiqun & Zhao, Caiyou & Wang, Ping, 2020. "A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting," Applied Energy, Elsevier, vol. 266(C).
    2. Wang, Chen & Lai, Siu-Kai & Wang, Jia-Mei & Feng, Jing-Jing & Ni, Yi-Qing, 2021. "An ultra-low-frequency, broadband and multi-stable tri-hybrid energy harvester for enabling the next-generation sustainable power," Applied Energy, Elsevier, vol. 291(C).
    3. Gao, Mingyuan & Wang, Yuan & Wang, Yifeng & Wang, Ping, 2018. "Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation," Applied Energy, Elsevier, vol. 220(C), pages 856-875.
    4. Luo, Anxin & Zhang, Yulong & Dai, Xiangtian & Wang, Yifan & Xu, Weihan & Lu, Yan & Wang, Min & Fan, Kangqi & Wang, Fei, 2020. "An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency," Applied Energy, Elsevier, vol. 279(C).
    5. Pan, Yu & Liu, Fengwei & Jiang, Ruijin & Tu, Zhiwen & Zuo, Lei, 2019. "Modeling and onboard test of an electromagnetic energy harvester for railway cars," Applied Energy, Elsevier, vol. 250(C), pages 568-581.
    6. Lou, Hu & Wang, Tao & Zhu, Shiqiang, 2022. "Design, modeling and experiments of a novel biaxial-pendulum vibration energy harvester," Energy, Elsevier, vol. 254(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su, Xunwen & Tong, Chang & Pang, Huiren & Tomovic, Mileta, 2023. "Research on pendulum-type tunable vibration energy harvesting," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Qinlin & Zhu, Songye, 2021. "Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters," Applied Energy, Elsevier, vol. 298(C).
    2. Azam, Ali & Ahmed, Ammar & Kamran, Muhammad Sajid & Hai, Li & Zhang, Zutao & Ali, Asif, 2021. "Knowledge structuring for enhancing mechanical energy harvesting (MEH): An in-depth review from 2000 to 2020 using CiteSpace," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
    4. Yijun Zhu & Huilin Shang, 2022. "Global Dynamics of the Vibrating System of a Tristable Piezoelectric Energy Harvester," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
    5. Zhang, Duo & Tang, Yin-Ying & Peng, Qi-Yuan, 2023. "A novel approach for decreasing driving energy consumption during coasting and cruise for the railway vehicle," Energy, Elsevier, vol. 263(PA).
    6. Fan, Kangqi & Wang, Chenyu & Zhang, Yan & Guo, Jiyuan & Li, Rongchun & Wang, Fei & Tan, Qinxue, 2023. "Modeling and experimental verification of a pendulum-based low-frequency vibration energy harvester," Renewable Energy, Elsevier, vol. 211(C), pages 100-111.
    7. Li, Rongchun & Fan, Kangqi & Ma, Xiaoyu & Wen, Tao & Liu, Qingli & Gao, Xianming & Zhu, Jiuling & Zhang, Yan, 2023. "A rotational energy harvester with a semi-flexible one-way clutch for capturing low-frequency vibration energy," Energy, Elsevier, vol. 281(C).
    8. Gao, Mingyuan & Cong, Jianli & Xiao, Jieling & He, Qing & Li, Shoutai & Wang, Yuan & Yao, Ye & Chen, Rong & Wang, Ping, 2020. "Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport," Applied Energy, Elsevier, vol. 257(C).
    9. Liu, Mengzhou & Zhang, Yuan & Fu, Hailing & Qin, Yong & Ding, Ao & Yeatman, Eric M., 2023. "A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring," Applied Energy, Elsevier, vol. 337(C).
    10. Liu, Weiqun & Qin, Gang & Zhu, Qiao & Hu, Guangdi, 2018. "Synchronous extraction circuit with self-adaptive peak-detection mechanical switches design for piezoelectric energy harvesting," Applied Energy, Elsevier, vol. 230(C), pages 1292-1303.
    11. Bogdan Dziadak & Mariusz Kucharek & Jacek StarzyƄski, 2022. "Powering the WSN Node for Monitoring Rail Car Parameters, Using a Piezoelectric Energy Harvester," Energies, MDPI, vol. 15(5), pages 1-18, February.
    12. Dongmei Huang & Shengxi Zhou & Zhichun Yang, 2019. "Resonance Mechanism of Nonlinear Vibrational Multistable Energy Harvesters under Narrow-Band Stochastic Parametric Excitations," Complexity, Hindawi, vol. 2019, pages 1-20, December.
    13. Chen, Lin & Liao, Xin & Sun, Beibei & Zhang, Ning & Wu, Jianwei, 2022. "A numerical-experimental dynamic analysis of high-efficiency and broadband bistable energy harvester with self-decreasing potential barrier effect," Applied Energy, Elsevier, vol. 317(C).
    14. Liu, Mingyi & Qian, Feng & Mi, Jia & Zuo, Lei, 2022. "Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions," Applied Energy, Elsevier, vol. 321(C).
    15. Wuwei Feng & Hongya Chen & Qingping Zou & Di Wang & Xiang Luo & Cathal Cummins & Chuanqiang Zhang & Shujie Yang & Yuxiang Su, 2024. "A Contactless Coupled Pendulum and Piezoelectric Wave Energy Harvester: Model and Experiment," Energies, MDPI, vol. 17(4), pages 1-20, February.
    16. Dong, Liwei & Zuo, Jianyong & Wang, Tianpeng & Xue, Wenbin & Wang, Ping & Li, Jun & Yang, Fan, 2022. "Enhanced piezoelectric harvester for track vibration based on tunable broadband resonant methodology," Energy, Elsevier, vol. 254(PA).
    17. Cao, Dong-Xing & Lu, Yi-Ming & Lai, Siu-Kai & Mao, Jia-Jia & Guo, Xiang-Ying & Shen, Yong-Jun, 2022. "A novel soft encapsulated multi-directional and multi-modal piezoelectric vibration energy harvester," Energy, Elsevier, vol. 254(PB).
    18. Fang, Zheng & Tan, Xing & Liu, Genshuo & Zhou, Zijie & Pan, Yajia & Ahmed, Ammar & Zhang, Zutao, 2022. "A novel vibration energy harvesting system integrated with an inertial pendulum for zero-energy sensor applications in freight trains," Applied Energy, Elsevier, vol. 318(C).
    19. Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).
    20. Gunn, B. & Alevras, P. & Flint, J.A. & Fu, H. & Rothberg, S.J. & Theodossiades, S., 2021. "A self-tuned rotational vibration energy harvester for self-powered wireless sensing in powertrains," Applied Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922013046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.