IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v230y2018icp1292-1303.html
   My bibliography  Save this article

Synchronous extraction circuit with self-adaptive peak-detection mechanical switches design for piezoelectric energy harvesting

Author

Listed:
  • Liu, Weiqun
  • Qin, Gang
  • Zhu, Qiao
  • Hu, Guangdi

Abstract

Synchronous extraction circuits for enhanced piezoelectric energy harvesting generally require dedicated electronic units for switching operations, but additional effects of higher start voltage threshold, more cost and energy consumption are introduced. As an alternative solution with less electronic components and lower voltage threshold, this article presents a novel synchronous switching circuit with a new self-adaptive peak-detection mechanical switch design which is composed of two auxiliary oscillators of low resonant frequency, a piezoelectric generator and two soft spring electrodes between them. In contrast with previous mechanical switch solutions for fixed displacement amplitude or frequency, this design can automatically trace the displacement amplitude and conduct the synchronous switching operations so that the performance can be greatly improved. Automatic peak-detection and switching ability for different vibration amplitude and frequencies is experimentally demonstrated by this circuit with the proposed self-adaptive mechanical switches. A power enhancement of 375% has been achieved by this new circuit in comparison with the standard approach. Further discussions have been performed to detail the structure characteristics while the possible application of the piezoelectric generator with the self-adaptive mechanical switch in vehicle monitoring is suggested.

Suggested Citation

  • Liu, Weiqun & Qin, Gang & Zhu, Qiao & Hu, Guangdi, 2018. "Synchronous extraction circuit with self-adaptive peak-detection mechanical switches design for piezoelectric energy harvesting," Applied Energy, Elsevier, vol. 230(C), pages 1292-1303.
  • Handle: RePEc:eee:appene:v:230:y:2018:i:c:p:1292-1303
    DOI: 10.1016/j.apenergy.2018.09.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918313618
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.09.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Kangqi & Liu, Shaohua & Liu, Haiyan & Zhu, Yingmin & Wang, Weidong & Zhang, Daxing, 2018. "Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester," Applied Energy, Elsevier, vol. 216(C), pages 8-20.
    2. Jung, Inki & Shin, Youn-Hwan & Kim, Sangtae & Choi, Ji-young & Kang, Chong-Yun, 2017. "Flexible piezoelectric polymer-based energy harvesting system for roadway applications," Applied Energy, Elsevier, vol. 197(C), pages 222-229.
    3. Gao, Mingyuan & Wang, Yuan & Wang, Yifeng & Wang, Ping, 2018. "Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation," Applied Energy, Elsevier, vol. 220(C), pages 856-875.
    4. Jasim, Abbas & Yesner, Greg & Wang, Hao & Safari, Ahmad & Maher, Ali & Basily, B., 2018. "Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications," Applied Energy, Elsevier, vol. 224(C), pages 438-447.
    5. Zhou, Shengxi & Cao, Junyi & Inman, Daniel J. & Lin, Jing & Liu, Shengsheng & Wang, Zezhou, 2014. "Broadband tristable energy harvester: Modeling and experiment verification," Applied Energy, Elsevier, vol. 133(C), pages 33-39.
    6. Zhang, Xingtian & Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yuan, Yanping & Liu, Yujie, 2017. "A renewable energy harvesting system using a mechanical vibration rectifier (MVR) for railroads," Applied Energy, Elsevier, vol. 204(C), pages 1535-1543.
    7. Zhang, Yulong & Wang, Tianyang & Luo, Anxin & Hu, Yushen & Li, Xinxin & Wang, Fei, 2018. "Micro electrostatic energy harvester with both broad bandwidth and high normalized power density," Applied Energy, Elsevier, vol. 212(C), pages 362-371.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jun & Liu, Zhiming & Ding, Guangya & Fu, Hongtao & Cai, Guojun, 2021. "Watt-level road-compatible piezoelectric energy harvester for LED-induced lamp system," Energy, Elsevier, vol. 229(C).
    2. Zhu, Qiangguo & Wang, Guangqing & Zheng, Youcheng & Liu, Zhoulong & Zhou, Shuo & Zhang, Beiqi, 2022. "Coupling nonlinearities and dynamics between the hybrid tri-stable piezoelectric energy harvester and nonlinear interfaced circuit," Applied Energy, Elsevier, vol. 323(C).
    3. Liu, Weiqun & Yuan, Zhongxin & Zhang, Shuang & Zhu, Qiao, 2019. "Enhanced broadband generator of dual buckled beams with simultaneous translational and torsional coupling," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lin & Liao, Xin & Sun, Beibei & Zhang, Ning & Wu, Jianwei, 2022. "A numerical-experimental dynamic analysis of high-efficiency and broadband bistable energy harvester with self-decreasing potential barrier effect," Applied Energy, Elsevier, vol. 317(C).
    2. Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
    3. Gu, Yuhan & Liu, Weiqun & Zhao, Caiyou & Wang, Ping, 2020. "A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting," Applied Energy, Elsevier, vol. 266(C).
    4. Gholikhani, Mohammadreza & Nasouri, Reza & Tahami, Seyed Amid & Legette, Sarah & Dessouky, Samer & Montoya, Arturo, 2019. "Harvesting kinetic energy from roadway pavement through an electromagnetic speed bump," Applied Energy, Elsevier, vol. 250(C), pages 503-511.
    5. Aldawood, Ghufran & Nguyen, Hieu Tri & Bardaweel, Hamzeh, 2019. "High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Han, Minglei & Yang, Xu & Wang, Dong F. & Jiang, Lei & Song, Wei & Ono, Takahito, 2022. "A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations," Applied Energy, Elsevier, vol. 315(C).
    7. Wang, Yifeng & Li, Shoutai & Gao, Mingyuan & Ouyang, Huajiang & He, Qing & Wang, Ping, 2021. "Analysis, design and testing of a rolling magnet harvester with diametrical magnetization for train vibration," Applied Energy, Elsevier, vol. 300(C).
    8. Zhang, Jinhui & Qin, Lifeng, 2019. "A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact- and rope-driven hybrid mechanism," Applied Energy, Elsevier, vol. 240(C), pages 26-34.
    9. Yang, Tao & Cao, Qingjie, 2020. "Dynamics and high-efficiency of a novel multi-stable energy harvesting system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    10. Ju, Suna & Ji, Chang-Hyeon, 2018. "Impact-based piezoelectric vibration energy harvester," Applied Energy, Elsevier, vol. 214(C), pages 139-151.
    11. Fan, Kangqi & Wang, Chenyu & Zhang, Yan & Guo, Jiyuan & Li, Rongchun & Wang, Fei & Tan, Qinxue, 2023. "Modeling and experimental verification of a pendulum-based low-frequency vibration energy harvester," Renewable Energy, Elsevier, vol. 211(C), pages 100-111.
    12. Liu, Weiqun & Yuan, Zhongxin & Zhang, Shuang & Zhu, Qiao, 2019. "Enhanced broadband generator of dual buckled beams with simultaneous translational and torsional coupling," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Zhao, Liya & Yang, Yaowen, 2018. "An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting," Applied Energy, Elsevier, vol. 212(C), pages 233-243.
    14. Gao, Mingyuan & Cong, Jianli & Xiao, Jieling & He, Qing & Li, Shoutai & Wang, Yuan & Yao, Ye & Chen, Rong & Wang, Ping, 2020. "Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport," Applied Energy, Elsevier, vol. 257(C).
    15. Tomasz Haniszewski & Maria Cieśla, 2022. "Energy Harvesting in the Crane-Hoisting Mechanism," Energies, MDPI, vol. 15(24), pages 1-22, December.
    16. Dongmei Huang & Shengxi Zhou & Zhichun Yang, 2019. "Resonance Mechanism of Nonlinear Vibrational Multistable Energy Harvesters under Narrow-Band Stochastic Parametric Excitations," Complexity, Hindawi, vol. 2019, pages 1-20, December.
    17. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Lin, S.X. & Wang, L., 2019. "Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters," Applied Energy, Elsevier, vol. 254(C).
    18. Li, Yi & Zhou, Shengxi & Yang, Zhichun & Guo, Tong & Mei, Xutao, 2019. "High-performance low-frequency bistable vibration energy harvesting plate with tip mass blocks," Energy, Elsevier, vol. 180(C), pages 737-750.
    19. Zhang, Yulong & Wang, Tianyang & Luo, Anxin & Hu, Yushen & Li, Xinxin & Wang, Fei, 2018. "Micro electrostatic energy harvester with both broad bandwidth and high normalized power density," Applied Energy, Elsevier, vol. 212(C), pages 362-371.
    20. Li, Zhongjie & Yang, Zhengbao & Naguib, Hani E., 2020. "Introducing revolute joints into piezoelectric energy harvesters," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:230:y:2018:i:c:p:1292-1303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.