IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v266y2020ics0306261920303585.html
   My bibliography  Save this article

A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting

Author

Listed:
  • Gu, Yuhan
  • Liu, Weiqun
  • Zhao, Caiyou
  • Wang, Ping

Abstract

A novel electromagnetic energy harvester for in-plane multi-directional vibrations is developed by letting a magnetic ball move on a two-dimensional surface which is generated from the rotation of a one-dimensional bi-stable potential curve. A goblet-like structure is designed to keep the ball on the nonlinear potential surface. Due to the special symmetric configuration, in-plane excitations from any direction can equivalently force the motion of the magnetic ball and thus produce electricity in the coils on the outer surface of the structure. Meanwhile, the good features of nonlinearities on bandwidth extension are preserved. Continual circular motions were observed for a wide frequency range. The operation bandwidth could reach a high value of 8 Hz and simultaneously the maximum power of 7.649mW was captured in experiments under a harmonic excitation of 1 g, corresponding to a normalized power density of 72.5 µW cm−3 g−2. In particular, the proposed harvester showed good performance for low frequency vibrations and is especially suitable for human body energy harvesting. With the harvester attached to the ankle, 1.4mW was obtained when walking at 5 km h−1. Notably, the method can be applied to other one-dimensional potential portraits for constructing the corresponding two-dimensional potential surface.

Suggested Citation

  • Gu, Yuhan & Liu, Weiqun & Zhao, Caiyou & Wang, Ping, 2020. "A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting," Applied Energy, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:appene:v:266:y:2020:i:c:s0306261920303585
    DOI: 10.1016/j.apenergy.2020.114846
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920303585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114846?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Kangqi & Liu, Shaohua & Liu, Haiyan & Zhu, Yingmin & Wang, Weidong & Zhang, Daxing, 2018. "Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester," Applied Energy, Elsevier, vol. 216(C), pages 8-20.
    2. Liu, Weiqun & Yuan, Zhongxin & Zhang, Shuang & Zhu, Qiao, 2019. "Enhanced broadband generator of dual buckled beams with simultaneous translational and torsional coupling," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Gao, Mingyuan & Wang, Yuan & Wang, Yifeng & Wang, Ping, 2018. "Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation," Applied Energy, Elsevier, vol. 220(C), pages 856-875.
    4. Roshani, Hossein & Dessouky, Samer & Montoya, Arturo & Papagiannakis, A.T., 2016. "Energy harvesting from asphalt pavement roadways vehicle-induced stresses: A feasibility study," Applied Energy, Elsevier, vol. 182(C), pages 210-218.
    5. Aldawood, Ghufran & Nguyen, Hieu Tri & Bardaweel, Hamzeh, 2019. "High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Wu, Yipeng & Qiu, Jinhao & Zhou, Shengpeng & Ji, Hongli & Chen, Yang & Li, Sen, 2018. "A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting," Applied Energy, Elsevier, vol. 231(C), pages 600-614.
    7. Halim, M.A. & Rantz, R. & Zhang, Q. & Gu, L. & Yang, K. & Roundy, S., 2018. "An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion," Applied Energy, Elsevier, vol. 217(C), pages 66-74.
    8. Zhang, Jinhui & Qin, Lifeng, 2019. "A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact- and rope-driven hybrid mechanism," Applied Energy, Elsevier, vol. 240(C), pages 26-34.
    9. Zhang, Yulong & Wang, Tianyang & Luo, Anxin & Hu, Yushen & Li, Xinxin & Wang, Fei, 2018. "Micro electrostatic energy harvester with both broad bandwidth and high normalized power density," Applied Energy, Elsevier, vol. 212(C), pages 362-371.
    10. Kim, Jae Woo & Salauddin, Md & Cho, Hyunok & Rasel, M. Salauddin & Park, Jae Yeong, 2019. "Electromagnetic energy harvester based on a finger trigger rotational gear module and an array of disc Halbach magnets," Applied Energy, Elsevier, vol. 250(C), pages 776-785.
    11. Liu, Mingyi & Lin, Rui & Zhou, Shengxi & Yu, Yilun & Ishida, Aki & McGrath, Margarita & Kennedy, Brook & Hajj, Muhammad & Zuo, Lei, 2018. "Design, simulation and experiment of a novel high efficiency energy harvesting paver," Applied Energy, Elsevier, vol. 212(C), pages 966-975.
    12. Zhao, Liya & Yang, Yaowen, 2018. "An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting," Applied Energy, Elsevier, vol. 212(C), pages 233-243.
    13. Fan, Kangqi & Zhang, Yiwei & Liu, Haiyan & Cai, Meiling & Tan, Qinxue, 2019. "A nonlinear two-degree-of-freedom electromagnetic energy harvester for ultra-low frequency vibrations and human body motions," Renewable Energy, Elsevier, vol. 138(C), pages 292-302.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Minglei & Yang, Xu & Wang, Dong F. & Jiang, Lei & Song, Wei & Ono, Takahito, 2022. "A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations," Applied Energy, Elsevier, vol. 315(C).
    2. Wang, Tao & Lou, Hu & Zhu, Shiqiang, 2022. "Bandwidth enhancement of a gimbaled-pendulum vibration energy harvester using spatial multi-stable mechanism," Applied Energy, Elsevier, vol. 326(C).
    3. Azam, Ali & Ahmed, Ammar & Kamran, Muhammad Sajid & Hai, Li & Zhang, Zutao & Ali, Asif, 2021. "Knowledge structuring for enhancing mechanical energy harvesting (MEH): An in-depth review from 2000 to 2020 using CiteSpace," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Chen, Keyu & Gao, Qiang & Fang, Shitong & Zou, Donglin & Yang, Zhengbao & Liao, Wei-Hsin, 2021. "An auxetic nonlinear piezoelectric energy harvester for enhancing efficiency and bandwidth," Applied Energy, Elsevier, vol. 298(C).
    5. Yijun Zhu & Huilin Shang, 2022. "Global Dynamics of the Vibrating System of a Tristable Piezoelectric Energy Harvester," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
    6. Wang, Chen & Lai, Siu-Kai & Wang, Jia-Mei & Feng, Jing-Jing & Ni, Yi-Qing, 2021. "An ultra-low-frequency, broadband and multi-stable tri-hybrid energy harvester for enabling the next-generation sustainable power," Applied Energy, Elsevier, vol. 291(C).
    7. Luo, Anxin & Zhang, Yulong & Dai, Xiangtian & Wang, Yifan & Xu, Weihan & Lu, Yan & Wang, Min & Fan, Kangqi & Wang, Fei, 2020. "An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency," Applied Energy, Elsevier, vol. 279(C).
    8. Ezekiel Darlington Nwalike & Khalifa Aliyu Ibrahim & Fergus Crawley & Qing Qin & Patrick Luk & Zhenhua Luo, 2023. "Harnessing Energy for Wearables: A Review of Radio Frequency Energy Harvesting Technologies," Energies, MDPI, vol. 16(15), pages 1-26, July.
    9. Zhijie Feng & Han Peng & Yong Chen, 2021. "A Dual Resonance Electromagnetic Vibration Energy Harvester for Wide Harvested Frequency Range with Enhanced Output Power," Energies, MDPI, vol. 14(22), pages 1-15, November.
    10. Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Lin, S.X. & Wang, L., 2019. "Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters," Applied Energy, Elsevier, vol. 254(C).
    2. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    3. Aldawood, Ghufran & Nguyen, Hieu Tri & Bardaweel, Hamzeh, 2019. "High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Han, Minglei & Yang, Xu & Wang, Dong F. & Jiang, Lei & Song, Wei & Ono, Takahito, 2022. "A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations," Applied Energy, Elsevier, vol. 315(C).
    5. Luo, Anxin & Zhang, Yulong & Dai, Xiangtian & Wang, Yifan & Xu, Weihan & Lu, Yan & Wang, Min & Fan, Kangqi & Wang, Fei, 2020. "An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency," Applied Energy, Elsevier, vol. 279(C).
    6. Tri Nguyen, Hieu & Genov, Dentcho A. & Bardaweel, Hamzeh, 2020. "Vibration energy harvesting using magnetic spring based nonlinear oscillators: Design strategies and insights," Applied Energy, Elsevier, vol. 269(C).
    7. Fan, Kangqi & Qu, Hengheng & Wu, Yipeng & Wen, Tao & Wang, Fei, 2020. "Design and development of a rotational energy harvester for ultralow frequency vibrations and irregular human motions," Renewable Energy, Elsevier, vol. 156(C), pages 1028-1039.
    8. Zhou, Ning & Hou, Zehao & Zhang, Ying & Cao, Junyi & Bowen, Chris R., 2021. "Enhanced swing electromagnetic energy harvesting from human motion," Energy, Elsevier, vol. 228(C).
    9. Liu, Weiqun & Qin, Gang & Zhu, Qiao & Hu, Guangdi, 2018. "Synchronous extraction circuit with self-adaptive peak-detection mechanical switches design for piezoelectric energy harvesting," Applied Energy, Elsevier, vol. 230(C), pages 1292-1303.
    10. Chen, Lin & Liao, Xin & Sun, Beibei & Zhang, Ning & Wu, Jianwei, 2022. "A numerical-experimental dynamic analysis of high-efficiency and broadband bistable energy harvester with self-decreasing potential barrier effect," Applied Energy, Elsevier, vol. 317(C).
    11. Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).
    12. Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
    13. Tan, Qinxue & Fan, Kangqi & Guo, Jiyuan & Wen, Tao & Gao, Libo & Zhou, Shengxi, 2021. "A cantilever-driven rotor for efficient vibration energy harvesting," Energy, Elsevier, vol. 235(C).
    14. Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
    15. Peng, Yan & Xu, Zhibing & Wang, Min & Li, Zhongjie & Peng, Jinlin & Luo, Jun & Xie, Shaorong & Pu, Huayan & Yang, Zhengbao, 2021. "Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators," Renewable Energy, Elsevier, vol. 172(C), pages 551-563.
    16. Castellano-Aldave, Carlos & Carlosena, Alfonso & Iriarte, Xabier & Plaza, Aitor, 2023. "Ultra-low frequency multidirectional harvester for wind turbines," Applied Energy, Elsevier, vol. 334(C).
    17. Shi, Ge & Tong, Dike & Xia, Yinshui & Jia, Shengyao & Chang, Jian & Li, Qing & Wang, Xiudeng & Xia, Huakang & Ye, Yidie, 2022. "A piezoelectric vibration energy harvester for multi-directional and ultra-low frequency waves with magnetic coupling driven by rotating balls," Applied Energy, Elsevier, vol. 310(C).
    18. Fan, Kangqi & Wang, Chenyu & Zhang, Yan & Guo, Jiyuan & Li, Rongchun & Wang, Fei & Tan, Qinxue, 2023. "Modeling and experimental verification of a pendulum-based low-frequency vibration energy harvester," Renewable Energy, Elsevier, vol. 211(C), pages 100-111.
    19. Liu, Weiqun & Yuan, Zhongxin & Zhang, Shuang & Zhu, Qiao, 2019. "Enhanced broadband generator of dual buckled beams with simultaneous translational and torsional coupling," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Fan, Kangqi & Wang, Chenyu & Chen, Chenggen & Zhang, Yan & Wang, Peihong & Wang, Fei, 2021. "A pendulum-plucked rotor for efficient exploitation of ultralow-frequency mechanical energy," Renewable Energy, Elsevier, vol. 179(C), pages 339-350.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:266:y:2020:i:c:s0306261920303585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.