IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v172y2021icp551-563.html
   My bibliography  Save this article

Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators

Author

Listed:
  • Peng, Yan
  • Xu, Zhibing
  • Wang, Min
  • Li, Zhongjie
  • Peng, Jinlin
  • Luo, Jun
  • Xie, Shaorong
  • Pu, Huayan
  • Yang, Zhengbao

Abstract

This paper originally investigates the influence of frequency-up conversion effect on piezoelectric stack generators for high-performance energy harvesting. A compressive-mode piezoelectric generator is proposed comprised of a piezostack and a spring-mass system for electromechanical transduction and mechanical excitation, respectively. The frequency-up conversion effect is induced by amplitude truncations of the mass under external excitation. A control group, i.e. without truncation, is set for performance comparisons. Experimental results indicate that, with the frequency-up conversion, instantaneous power and average power are enhanced by over 1000 and 177 times, respectively. Each voltage response cycle consists of two stages: high-frequency high-amplitude oscillation and the rest of low-frequency low-amplitude harmonic vibration. The frequency of the former stage determines impedance matching. Due to the frequency converted up by 69 times, and intrinsic high capacitance of the stack, the matched resistance is significantly reduced from over 5 kΩ to 73.10 Ω, resulting much higher power response than that without conversion. Additionally, increase of spring stiffness causes the decrease of voltage responses and less effectiveness of frequency conversion effect. In this work we conclusively report that an instantaneous peak power output of 0.32 W can be generated from a millimeter-size piezoelectric generator, which can foster development of high-viability self-powered applications.

Suggested Citation

  • Peng, Yan & Xu, Zhibing & Wang, Min & Li, Zhongjie & Peng, Jinlin & Luo, Jun & Xie, Shaorong & Pu, Huayan & Yang, Zhengbao, 2021. "Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators," Renewable Energy, Elsevier, vol. 172(C), pages 551-563.
  • Handle: RePEc:eee:renene:v:172:y:2021:i:c:p:551-563
    DOI: 10.1016/j.renene.2021.03.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121004201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zhongjie & Li, Terek & Yang, Zhengbao & Naguib, Hani E., 2019. "Toward a 0.33 W piezoelectric and electromagnetic hybrid energy harvester: Design, experimental studies and self-powered applications," Applied Energy, Elsevier, vol. 255(C).
    2. Chiu, Min-Chie & Karkoub, Mansour & Her, Ming-Guo, 2020. "Two-magnet energy harvesting device for charging submersable sensors," Renewable Energy, Elsevier, vol. 152(C), pages 120-137.
    3. Khalili, Mohamadreza & Biten, Ayetullah B. & Vishwakarma, Gopal & Ahmed, Sara & Papagiannakis, A.T., 2019. "Electro-mechanical characterization of a piezoelectric energy harvester," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Yayla, Sedat & Ayça, Sümeyya & Oruç, Mehmet, 2020. "A case study on piezoelectric energy harvesting with using vortex generator plate modeling for fluids," Renewable Energy, Elsevier, vol. 157(C), pages 1243-1253.
    5. Wang, Chaohui & Wang, Shuai & Gao, Zhiwei & Wang, Xingju, 2019. "Applicability evaluation of embedded piezoelectric energy harvester applied in pavement structures," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Turkmen, Anil Can & Celik, Cenk, 2018. "Energy harvesting with the piezoelectric material integrated shoe," Energy, Elsevier, vol. 150(C), pages 556-564.
    7. Cottrill, Anton L. & Zhang, Ge & Liu, Albert Tianxiang & Bakytbekov, Azamat & Silmore, Kevin S. & Koman, Volodymyr B. & Shamim, Atif & Strano, Michael S., 2019. "Persistent energy harvesting in the harsh desert environment using a thermal resonance device: Design, testing, and analysis," Applied Energy, Elsevier, vol. 235(C), pages 1514-1523.
    8. Qian, Feng & Xu, Tian-Bing & Zuo, Lei, 2019. "Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism," Energy, Elsevier, vol. 189(C).
    9. Yar, Adem & Karabiber, Abdulkerim & Ozen, Abdurrahman & Ozel, Faruk & Coskun, Sahin, 2020. "Flexible nanofiber based triboelectric nanogenerators with high power conversion," Renewable Energy, Elsevier, vol. 162(C), pages 1428-1437.
    10. Zhang, Jinhui & Qin, Lifeng, 2019. "A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact- and rope-driven hybrid mechanism," Applied Energy, Elsevier, vol. 240(C), pages 26-34.
    11. Fan, Kangqi & Qu, Hengheng & Wu, Yipeng & Wen, Tao & Wang, Fei, 2020. "Design and development of a rotational energy harvester for ultralow frequency vibrations and irregular human motions," Renewable Energy, Elsevier, vol. 156(C), pages 1028-1039.
    12. Zhang, Yulong & Wang, Tianyang & Luo, Anxin & Hu, Yushen & Li, Xinxin & Wang, Fei, 2018. "Micro electrostatic energy harvester with both broad bandwidth and high normalized power density," Applied Energy, Elsevier, vol. 212(C), pages 362-371.
    13. Wei, Liangliang & Nakamura, Taketsune & Imai, Keita, 2020. "Development and optimization of low-speed and high-efficiency permanent magnet generator for micro hydro-electrical generation system," Renewable Energy, Elsevier, vol. 147(P1), pages 1653-1662.
    14. Maharjan, Pukar & Bhatta, Trilochan & Salauddin Rasel, M. & Salauddin, Md. & Toyabur Rahman, M. & Park, Jae Yeong, 2019. "High-performance cycloid inspired wearable electromagnetic energy harvester for scavenging human motion energy," Applied Energy, Elsevier, vol. 256(C).
    15. Wang, Xiang & Chen, Changsong & Wang, Na & San, Haisheng & Yu, Yuxi & Halvorsen, Einar & Chen, Xuyuan, 2017. "A frequency and bandwidth tunable piezoelectric vibration energy harvester using multiple nonlinear techniques," Applied Energy, Elsevier, vol. 190(C), pages 368-375.
    16. Song, Gyeong Ju & Kim, Kyung-Bum & Cho, Jae Yong & Woo, Min Sik & Ahn, Jung Hwan & Eom, Jong Hyuk & Ko, Sung Min & Yang, Chan Ho & Hong, Seong Do & Jeong, Se Yeong & Hwang, Won Seop & Woo, Sang Bum & , 2019. "Performance of a speed bump piezoelectric energy harvester for an automatic cellphone charging system," Applied Energy, Elsevier, vol. 247(C), pages 221-227.
    17. Olivieri, Stefano & Boccalero, Gregorio & Mazzino, Andrea & Boragno, Corrado, 2017. "Fluttering conditions of an energy harvester for autonomous powering," Renewable Energy, Elsevier, vol. 105(C), pages 530-538.
    18. Song, Gyeong Ju & Cho, Jae Yong & Kim, Kyung-Bum & Ahn, Jung Hwan & Song, Yewon & Hwang, Wonseop & Hong, Seong Do & Sung, Tae Hyun, 2019. "Development of a pavement block piezoelectric energy harvester for self-powered walkway applications," Applied Energy, Elsevier, vol. 256(C).
    19. Salazar, R. & Abdelkefi, A., 2020. "Nonlinear analysis of a piezoelectric energy harvester in body undulatory caudal fin aquatic unmanned vehicles," Applied Energy, Elsevier, vol. 263(C).
    20. Sun, Rujie & Li, Qinyu & Yao, Jianfei & Scarpa, Fabrizio & Rossiter, Jonathan, 2020. "Tunable, multi-modal, and multi-directional vibration energy harvester based on three-dimensional architected metastructures," Applied Energy, Elsevier, vol. 264(C).
    21. Fan, Kangqi & Zhang, Yiwei & Liu, Haiyan & Cai, Meiling & Tan, Qinxue, 2019. "A nonlinear two-degree-of-freedom electromagnetic energy harvester for ultra-low frequency vibrations and human body motions," Renewable Energy, Elsevier, vol. 138(C), pages 292-302.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hashemian, Mehran & Jafarmadar, Samad & Khalilarya, Shahram & Faraji, Masoud, 2022. "Energy harvesting feasibility from photovoltaic/thermal (PV/T) hybrid system with Ag/Cr2O3-glycerol nanofluid optical filter," Renewable Energy, Elsevier, vol. 198(C), pages 426-439.
    2. Ebadollahi, Mohammad & Amidpour, Majid & Pourali, Omid & Ghaebi, Hadi, 2022. "Development of a novel flexible multigeneration energy system for meeting the energy needs of remote areas," Renewable Energy, Elsevier, vol. 198(C), pages 1224-1242.
    3. Taimoor Ahmad Khan & Amjad Ullah & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Faheem Ali & Sajjad Ali & Sheraz Khan & Khalid Rehman, 2022. "A Fractional Order Super Twisting Sliding Mode Controller for Energy Management in Smart Microgrid Using Dynamic Pricing Approach," Energies, MDPI, vol. 15(23), pages 1-14, November.
    4. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    5. Wang, Jian-Xu & Su, Wen-Bin & Li, Ji-Chao & Wang, Chun-Ming, 2022. "A rotational piezoelectric energy harvester based on trapezoid beam: Simulation and experiment," Renewable Energy, Elsevier, vol. 184(C), pages 619-626.
    6. Zhu, Hongjun & Tang, Tao & Zhou, Tongming & Cai, Mingjin & Gaidai, Oleg & Wang, Junlei, 2021. "High performance energy harvesting from flow-induced vibrations in trapezoidal oscillators," Energy, Elsevier, vol. 236(C).
    7. Wang, Junlei & Zhang, Chengyun & Hu, Guobiao & Liu, Xiaowei & Liu, Huadong & Zhang, Zhien & Das, Raj, 2022. "Wake galloping energy harvesting in heat exchange systems under the influence of ash deposition," Energy, Elsevier, vol. 253(C).
    8. Wang, Junlei & Zhang, Chengyun & Yurchenko, Daniil & Abdelkefi, Abdessattar & Zhang, Mingjie & Liu, Huadong, 2022. "Usefulness of inclined circular cylinders for designing ultra-wide bandwidth piezoelectric energy harvesters: Experiments and computational investigations," Energy, Elsevier, vol. 239(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Xiangdong & Wang, Zijing & Zhang, Jiankun & Zhao, Yan & Du, Guofeng & Luo, Mingzhang & Lei, Ming, 2022. "A study on a novel piezoelectric bricks made of double-storey piezoelectric coupled beams," Energy, Elsevier, vol. 250(C).
    2. Chen, Cheng & Sharafi, Amir & Sun, Jian-Qiao, 2020. "A high density piezoelectric energy harvesting device from highway traffic – Design analysis and laboratory validation," Applied Energy, Elsevier, vol. 269(C).
    3. Zhou, Ning & Hou, Zehao & Zhang, Ying & Cao, Junyi & Bowen, Chris R., 2021. "Enhanced swing electromagnetic energy harvesting from human motion," Energy, Elsevier, vol. 228(C).
    4. Gu, Yuhan & Liu, Weiqun & Zhao, Caiyou & Wang, Ping, 2020. "A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting," Applied Energy, Elsevier, vol. 266(C).
    5. Ghodsi, Mojtaba & Ziaiefar, Hamidreza & Mohammadzaheri, Morteza & Al-Yahmedi, Amur, 2019. "Modeling and characterization of permendur cantilever beam for energy harvesting," Energy, Elsevier, vol. 176(C), pages 561-569.
    6. Tri Nguyen, Hieu & Genov, Dentcho A. & Bardaweel, Hamzeh, 2020. "Vibration energy harvesting using magnetic spring based nonlinear oscillators: Design strategies and insights," Applied Energy, Elsevier, vol. 269(C).
    7. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Lin, S.X. & Wang, L., 2019. "Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters," Applied Energy, Elsevier, vol. 254(C).
    8. Liu, Mingyi & Qian, Feng & Mi, Jia & Zuo, Lei, 2022. "Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions," Applied Energy, Elsevier, vol. 321(C).
    9. Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).
    10. Li, Zhongjie & Peng, Yan & Xu, Zhibing & Peng, Jinlin & Xin, Liming & Wang, Min & Luo, Jun & Xie, Shaorong & Pu, Huayan, 2021. "Harnessing energy from suspension systems of oceanic vehicles with high-performance piezoelectric generators," Energy, Elsevier, vol. 228(C).
    11. Wang, Shuai & Wang, Chaohui & Gao, Zhiwei & Cao, Hongyun, 2020. "Design and performance of a cantilever piezoelectric power generation device for real-time road safety warnings," Applied Energy, Elsevier, vol. 276(C).
    12. Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2021. "Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review," Applied Energy, Elsevier, vol. 286(C).
    13. Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
    14. Wang, Chaohui & Cao, Hongyun & Wang, Shuai & Gao, Zhiwei, 2021. "Design and testing of road piezoelectric power generation device based on traffic environment applicability," Applied Energy, Elsevier, vol. 299(C).
    15. Eghbali, Pejman & Younesian, Davood & Farhangdoust, Saman, 2020. "Enhancement of the low-frequency acoustic energy harvesting with auxetic resonators," Applied Energy, Elsevier, vol. 270(C).
    16. Chen, Keyu & Gao, Qiang & Fang, Shitong & Zou, Donglin & Yang, Zhengbao & Liao, Wei-Hsin, 2021. "An auxetic nonlinear piezoelectric energy harvester for enhancing efficiency and bandwidth," Applied Energy, Elsevier, vol. 298(C).
    17. Han, Minglei & Yang, Xu & Wang, Dong F. & Jiang, Lei & Song, Wei & Ono, Takahito, 2022. "A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations," Applied Energy, Elsevier, vol. 315(C).
    18. Wang, Shuai & Wang, Chaohui & Yuan, Huazhi & Ji, Xiaoping & Yu, Gongxin & Jia, Xiaodong, 2023. "Size effect of piezoelectric energy harvester for road with high efficiency electrical properties," Applied Energy, Elsevier, vol. 330(PB).
    19. Bogdan Dziadak & Łukasz Makowski & Mariusz Kucharek & Adam Jóśko, 2023. "Energy Harvesting for Wearable Sensors and Body Area Network Nodes," Energies, MDPI, vol. 16(4), pages 1-30, February.
    20. Luo, Anxin & Zhang, Yulong & Dai, Xiangtian & Wang, Yifan & Xu, Weihan & Lu, Yan & Wang, Min & Fan, Kangqi & Wang, Fei, 2020. "An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:172:y:2021:i:c:p:551-563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.